|
|
Hot Deformation Behavior of Al-7.2Zn-3.8Mg Alloy |
LI Qingqian1,2, LIU Shengdan1,2( ), JIANG Keda1,3, FAN Shitong3, ZHAO Shourong3 |
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China 2 Key Laboratory of Non-Ferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China 3 Taishan City Kam Kiu Aluminium Extrusion Co. , Ltd. , Taishan 529261, China |
|
Cite this article:
LI Qingqian, LIU Shengdan, JIANG Keda, FAN Shitong, ZHAO Shourong. Hot Deformation Behavior of Al-7.2Zn-3.8Mg Alloy. Chinese Journal of Materials Research, 2025, 39(10): 734-742.
|
Abstract The hot deformation behavior of Al-7.2Zn-3.8Mg alloy was studied via gleeble thermal simulation tester by deformation rate of 0.01-0.1 s-1 in temperature range 400-460 oC (lnZ range is 31.1 to 36.6) and then the constitutive equation was constructed. Meanwhile, the microstructure of the alloy was examined by electron backscatter diffraction technique and the dynamic softening mechanism was discussed. The results show that the activation energy of hot deformation of the alloy is 217.702 kJ/mol in the setting range of compression parameters and dynamic recovery is dominant softening mechanism. Dynamic recrystallization occurs at lnZ 34.3, and the recrystallization fraction decreases with the increase of lnZ; within this range, the mechanism includes continuous dynamic recrystallization and discontinuous dynamic recrystallization, and with the decrease of lnZ, the continuous dynamic recrystallization characteristics are more obvious; the geometric dynamic recrystallization appears for 31.1 lnZ 32.1.
|
Received: 29 September 2024
|
|
Fund: 2023 Provincial Science and Technology Innovation Strategy Project of Guangdong Jiangmen(2023780200080009576) |
Corresponding Authors:
LIU Shengdan, Tel: (0731)88830265, E-mail: lsd_csu@csu.edu.cn
|
[1] |
Li S S, Yue X, Li Q Y, et al. Development and applications of aluminum alloys for aerospace industry [J]. J. Mater. Res. Technol., 2023, 27: 944
|
[2] |
Atxaga G, Arroyo A, Canflanca B. Hot stamping of aerospace aluminium alloys: automotive technologies for the aeronautics industry [J]. J. Manufactur. Process., 2022, 81: 817
|
[3] |
Gan G Q, Li P, Xue K M. Research progress on hot stamping process of high strength aluminum alloy plates for automotive parts [J]. Chin. J. Rare Met., 2024, 48: 564
|
|
甘国强, 李 萍, 薛克敏. 汽车件高强铝合金板件热冲压工艺研究进展 [J]. 稀有金属, 2024, 48: 564
|
[4] |
Li Z Q, Jiao J F, Liu X W. Research status and development trends of mechanical performance of 7-series high strength aluminum alloy [J]. Build. Struct., 2023, 53(Suppl. 2): 1215
|
|
李志强, 焦燏烽, 刘小蔚. 7系高强铝合金力学性能研究现状及发展趋势 [J]. 建筑结构, 2023, 53(增刊2): 1215
|
[5] |
Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29(9): 2115
|
|
邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29(9): 2115
|
[6] |
Qiu X T. Study on microstructure and properties of high strength aluminum alloys for 3C product shells [D]. Nanjing: Southeast University, 2019
|
|
邱馨婷. 3C产品壳体用高强铝合金组织和性能的研究 [D]. 南京: 东南大学, 2019
|
[7] |
Wu Y M, Jiang K D, Liu S D, et al. Hot compression deformation behavior of 6013 aluminum alloy by low lnZ [J]. Chin. J. Mater. Res., 2024, 38(5): 337
|
|
伍英明, 姜科达, 刘胜胆 等. 低lnZ条件下6013铝合金的热压缩变形行为 [J]. 材料研究学报, 2024, 38(5): 337
|
[8] |
Xue J, Wang Y W, Zhang Z H, et al. Effects of extrusion temperature on dynamic recrystallization, aging microstructure and mechanical properties of Al-Zn-Mg-Cu alloy [J]. Chin. J. Nonferrous Met., 2017, 27(11): 2204
|
|
薛 杰, 王有为, 张志豪 等. 挤压温度对Al-Zn-Mg-Cu合金动态再结晶、时效组织和力学性能的影响 [J]. 中国有色金属学报, 2017, 27(11): 2204
|
[9] |
Deng Y L, Wang Y F, Lin H Q, et al. Effect of extrusion temperature on strength and fracture toughness of an Al-Zn-Mg alloy [J]. Chin. J. Mater. Res., 2016, 30(2): 87
|
|
邓运来, 王亚风, 林化强 等. 挤压温度对Al-Zn-Mg合金力学性能的影响 [J]. 材料研究学报, 2016, 30(2): 87
|
[10] |
Chou P, Wang J Y, Duan X G, et al. Study on hot deformation behavior and microstructure evolution mechanism of AA7021 aluminum alloy [J]. Mater. Rep., 2020, 34(4): 8106
|
|
仇 鹏, 王家毅, 段晓鸽 等. AA7021铝合金热变形行为及微观组织演变机理的研究 [J]. 材料导报, 2020, 34(4): 8106
|
[11] |
Zheng X, Tang J G, Wan L, et al. Hot deformation behavior of alloy AA7003 with different Zn/Mg ratios [J]. Metals, 2022, 12: 1452
|
[12] |
Qu S Y, Li M, Lv Z F, et al. Hot deformation constitutive equation and hot processing map of novel Al-Zn-Mg aluminum alloy for automobile body [J]. J. Plast. Eng., 2020, 27(9): 161
|
|
曲世永, 李 民, 吕正风 等. 车身用新型Al-Zn-Mg铝合金热变形本构方程及热加工图 [J]. 塑性工程学报, 2020, 27(9): 161
|
[13] |
Wu H, Wen S P, Huang H, et al. Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy [J]. J. Alloy. Compd., 2016, 685: 869
|
[14] |
Zhang J L, Han B Z, Shen G W, et al. Hot deformation behavior and microstructural evolution of a new type of 7xxx Al alloy [J]. Mater. Today Commun., 2024, 41: 110218
|
[15] |
He Z B, Li H Z, Liang X P, et al. Hot deformation behavior and processing map of Al-Zn-Mg-Sc-Zr alloy [J]. Chin. J. Nonferrous Met., 2011, 21(6): 1220
|
|
何振波, 李慧中, 梁霄鹏 等. Al-Zn-Mg-Sc-Zr合金的热变形行为及加工图 [J]. 中国有色金属学报, 2011, 21(6): 1220
|
[16] |
Wang Y H, Chen Y L, Zhu X, et al. Hot deformation behaviors and hot processing maps of 7175 aluminum alloy [J]. J. Plast. Eng., 2024, 31(1): 216
|
|
王永红, 陈彦龙, 朱 鑫 等. 7175铝合金热变形行为与热加工图 [J]. 塑性工程学报, 2024, 31(1): 216
|
[17] |
Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14(9): 1136
|
[18] |
Li A, Zhang Y, Chen K Y, et al. Hot deformation behavior and dynamic recrystallization of Sc modified ultrahigh-strength aluminum alloy at strain rate of 10-3 s-1 [J]. J. Mater. Eng., 2024, 52(8): 169
|
|
李 昂, 张 毅, 陈开媛 等. 含钪超高强铝合金在应变速率10-3 s-1下的热流变及动态再结晶行为 [J]. 材料工程, 2024, 52(8): 169
|
[19] |
Hu H, Zhao F, Zhang Z H, et al. Effect of microstructure difference between center and edge of 2014 aluminum alloy extruded bar on hot compression deformation and recrystallization microstructure [J]. Chin. J. Nonferrous Met., 2022, 32(3): 603
|
|
胡 昊, 赵 帆, 张志豪 等. 2014铝合金挤压棒心表组织差异对热变形和再结晶的影响 [J]. 中国有色金属学报, 2022, 32(3): 603
|
[20] |
Yang D, Chen W L, Wang S Y, et al. Dynamic recrystallization grain size evolution model of 7075 aluminum alloy during hot deformation [J]. Chin. J. Nonferrous Met., 2013, 23(10): 2747
|
|
杨 栋, 陈文琳, 王少阳 等. 7075铝合金热变形时动态再结晶晶粒度演化模型 [J]. 中国有色金属学报, 2013, 23(10): 2747
|
[21] |
Feng X M, Wang Y T, Huang Q G, et al. The dynamic recrystallization microstructure characteristics and the effects on static recrystallization and mechanical properties of Al-Mg-Si alloy [J]. Mater. Sci. Eng., 2024, 899A: 146454
|
[22] |
Li J C, Wu X D, Cao L F, et al. Hot deformation and dynamic recrystallization in Al-Mg-Si alloy [J]. Mater. Charact., 2021, 173: 110976
|
[23] |
Cheng Z N, Zhang C S, Chu G N, et al. Dynamic precipitation and recrystallization behavior during hot deformation of Al-Zn-Mg-Cu alloy: Experiment and modeling [J]. Int. J. Plast., 2024, 178: 103995
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|