Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (6): 435-442    DOI: 10.11901/1005.3093.2024.343
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel
YANG Liang1,2, CHUAI Rongyan1, XUE Dan1, LIU Fang2, LIU Kunlin2,3, LIU Chang2, CAI Guixi2,3()
1.School of Information and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel. Chinese Journal of Materials Research, 2025, 39(6): 435-442.

Download:  HTML  PDF(15821KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure, micro zone properties, fracture morphology, and mechanical properties of different areas for the resistance spot welding joint of SUS301L stainless steel are systematically characterized via microhardness tester, electronic tensile shear testing machine, SEM, and IBIS. The results indicate that the morphology of the fusion zone in the joint is elliptical and which can be differentiated into the base metal zone, heat affected zone, and nugget zone. The microstructure distribution from the edge of the fusion core to the core center is columnar structure and equiaxed structure in sequence. The main defects of the joint include sputters on the edge of the fusion core, shrinkage porosity in the fusion core, and micro cracks, and the sputtering phenomenon is closely related to the occurrence of shrinkage porosity. The size of the nugget diameter is a key indicator that affects the mechanical properties, and there is a positive correlation between the two. As the thickness of the double-layer plate increases, the maximum tensile and shear force increment caused by the increment of the unit nugget diameter also significantly increases. The hardness and strength of the heat affected zone are lower than those of the base metal zone and the fusion zone, which leads to the formation of a softening zone at the corona bond. Due to the lower strength of this zone, the tensile shear force it can bear is relatively small, making it the starting area for tensile shear cracking. The forms of tensile shear fracture may be differentiated into passing through-core fracture and along-core fracture, the nugget diameter will affect the fracture mode of the joint.

Key words:  metallic materials      SUS301L stainless steel      resistance spot welding      mechanical properties      fracture mechanism      microstructure     
Received:  15 August 2024     
ZTFLH:  TG115.28  
Fund: National Natural Science Foundation of China(61372019);Basic Scientific Research Project by the Liaoning Provincial Department of Education(LJKMZ20220478);Liaoning Province Science and Technology Plan Joint Program (Applied Basic Research Project)(2023JH2/101700279)
Corresponding Authors:  CAI Guixi, Tel: 13709823129, E-mail: gxcai@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.343     OR     https://www.cjmr.org/EN/Y2025/V39/I6/435

CSiMnPSNiCrNFe
0.031.002.000.0450.037.1017.700.2Bal.
Table 1  Chemical composition of base metal
Fig.1  Welding process diagram
Fig.2  Comparison between ultrasonic testing results of resistance spot welding joints and actual nuggets; (a) ultrasonic testing results; (b) actual nuggets
Fig.3  Metallographic sample of resistance spot welding joint
Fig.4  Dimensions of tensile-shear specimen
Fig.5  Macroscopic morphology diagram of resistance point welding joint cross-section
Fig.6  Macroscopic morphology and microstructure of resistance spot welded joints(a) base metal zone (b) heat affected zone (c) corona bond zone (d) macroscopic morphology of resistance spot welded joints (e) the center of nugget (f) shrink zone (g) the side of nugget
Fig.7  Splash and shrinkage defects in resistance spot welding joints
Fig.8  Hardness and strength testing device and mea-surement results(a) hardness measurement results(b) location strength measurement results
Fig.9  Relationship between maximum load and nugget diameter
Fig.10  Microstructure of the resistance spot welded joint spot inner fracture(a) fracture (b) b of fracture (c) c of fracture (d) d of fracture (e) e of fracture (f) f of fracture
Fig.11  Microstructure of the resistance spot welded joint spot outer fracture(a) fracture (b) morphology of fracture
Fig.12  Force analysis of joints under tensile shear load
1 Hu T H, Wu T H, Pan H, et al. Progress in welding techniques to steel-aluminum alloy dissimilar welding joints[J]. J Iron Steel Res., 2023, 35(8): 928
胡天寒, 吴天海, 潘 华 等. 钢/铝异种材料接头焊接技术研究进展[J]. 钢铁研究学报, 2023, 35(8): 928
2 Hu J M, Bi J, Liu H W, et al. Prediction of resistance spot welding quality based on BPNN optimized by improved sparrow search algorithm[J]. Mater., 2022, 15(20): 7323
3 Tang J X, Wu M X, Shi L, et al. Aluminum/copper dissimilar metal double-sided friction stir welding formation and mechanical properties of joint[J]. Chin. J. Nonferr. Metal., 2022, 32(9): 2556
唐九兴, 吴明孝, 石 磊 等. 铝/铜异种金属双面搅拌摩擦焊接成形及接头力学性能[J]. 中国有色金属学报, 2022, 32(9): 2556
4 Chen Y J, Li S W, Meng X M, et al. Research progress of resistance spot welding of aluminum/steel dissimilar metals[J]. Mater. Rep., 2023, 37(13): 209
陈亚军, 李思伟, 孟宪明 等. 铝/钢异种材料电阻点焊研究进展[J]. 材料导报, 2023, 37(13): 209
5 Ao S, Shan H, Cui X T, et al. Effect of specimen width on the failure behavior in resistance spot weld tensile shear testing[J]. Weld. World, 2016, 60: 1095
6 Chung K, Noh W, Yang X, et al. Practical failure analysis of resistance spot welded advanced high-strength steel sheets[J]. Int. J. Plasticity, 2017, 94: 122
7 Liu J, Xu G, Ren L, et al. Simulation analysis of ultrasonic detection for resistance spot welding based on COMSOL Multiphysics[J]. J. Adv. Manufact. Technol., 2017, 93: 2089
8 Yi R T, Zhao D W, Wang Y X. Digital simulation of resistance spot welding considering the influence of phase transition[J]. Trans. Chin. Weld. Institu., 2013, 34(10): 71
易荣涛, 赵大伟, 王元勋. 考虑相变影响的电阻点焊数字模拟[J]. 焊接学报, 2013, 34(10): 71
9 FunabikiYuta, IyotaMuneyoshi, ShobuTakahisa, et al. Convection and joint characteristics in aluminum alloy melting zone during resistance spot welding of dissimilar Fe-Al material in external magnetic field[J]. J. Manufact. Proc., 2024, 115: 40
10 Arinez J F, Chang Q, Gao R X, et al. Artificial intelligence in advanced manufacturing: Current status and future outlook[J]. J. Manufact. Sci. Eng., 2020, 142: 111003
11 Zhou G R. Numerical simulation and metallographic study of resistance spot welding of high strength steel[J]. Mach. Build. Automa., 2019, 48(1): 142
周国荣. 高强钢电阻点焊数值模拟及金相研究[J]. 机械制造与自动化, 2019, 48(1): 142
12 Chen Y D, Chen F R. Microstructure and mechanical property of resistance spot welded joint of dissimilar steels of TRIP 980 high strength steel and SPCC low carbon steel[J]. Chin. J. Mater. Res, 2018, 32(3): 216
doi: 10.11901/1005.3093.2017.268
岑耀东, 陈芙蓉. TRIP980高强钢/SPCC低碳钢的异种钢板电阻点焊接头组织及力学性能研究[J]. 材料研究学报, 2018, 32(3): 216
doi: 10.11901/1005.3093.2017.268
13 Mvola B, Kah P, Martikainen J, et al. Dissimilar high- strength steels: fusion welded joints, mismatches, and challenges[J]. Rev. Adv. Mater. Sci., 2016, 44: 146
14 Liu J, Xu G, Ren L, et al. Defect intelligent identification in resistance spot welding ultrasonic detection based on wavelet packet and neural network[J]. Inter. J. Adv. Manufact. Tech., 2017, 90: 2581
15 Jiang Y L, Yang L, Han X H, et al. Study on cracking and fatigue property of stainless steel resistance spot welding under different conditions[J]. Chin. Mechan. Eng., 2021, 32(14): 1726
姜云禄, 杨 亮, 韩晓辉 等. 运行条件对不锈钢点焊疲劳性能影响及开裂分析[J]. 中国机械工程, 2021, 32(14): 1726
16 Mao Z D, Kan Y, Jiang Y L, et al. Overall residual stresses in the resistance spot welding joint of dissimilar aluminum alloys[J]. J. Mechan. Eng., 2020, 56(16): 84
毛镇东, 阚 盈, 姜云禄 等. 异种铝合金电阻点焊接头全场残余应力研究[J]. 机械工程学报, 2020, 56(16): 84
doi: 10.3901/JME.2020.16.084
17 Luo Z, Dong J W, Hu J M. Optimization of resistance spot welding quality prediction based on improved sparrow search algorithm for BPNN[J]. J. Tianjin Univ. (Sci. Tech.), 2024, 57(5): 445
罗 震, 董建伟, 胡建明. 基于改进麻雀搜索算法优化BPNN的电阻点焊质量预测[J]. 天津大学学报(自然科学与工程技术版), 2024, 57(5): 445
18 Guo T J, Zhang Q X, Sun X G, et al. Influence of adhesive sealant on resistance spot welding of stainless steel sheets with different thickness[J]. Chin. Mech. Eng., 2018, 29(24): 3009
郭太吉, 张庆鑫, 孙晓光 等. 密封胶对差厚不锈钢板电阻点焊接头的影响[J]. 中国机械工程, 2018, 29(24): 3009
19 Sun D Q, Zhang Y Y, Su L, et al. Effects of electrode morphology on microstructures and mechanical properties of spot welded Al-steel joints[J]. J. Mechan. Eng., 2016, 52(24): 36
孙大千, 张月莹, 苏 雷 等. 电极形状对铝-钢点焊接头组织及力学性能的影响[J]. 机械工程学报, 2016, 52(24): 36
doi: 10.3901/JME.2016.24.036
20 Cheng J L, Cheng D H, Qi A T, et al. Microstructure and mechanical properties of AZ31B magnesium alloy / 304 stainless steel resistance spot weld joint with high entropy alloy powder[J]. J. Mater. Eng., 2024, 52(1): 146
成家龙, 程东海, 亓安泰 等. 添加高熵合金粉末AZ31B镁合金/304不锈钢电阻点焊接头组织和力学性能[J]. 材料工程, 2024, 52(1): 146
doi: 10.11868/j.issn.1001-4381.2023.000615
21 Pashazadeh H, Gheisari Y, Hamedi M. Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm[J]. J. Intell. Manuf., 2016, 27: 549
22 Yang L, Chuai R, Cai G, et al. Ultrasonic non-destructive testing and evaluation of stainless-steel resistance spot welding based on spiral C-scan technique[J]. Sensors, 2024, 24(15): 4771
23 Li Z J, Cai G X, Zhang B, et al. Synthetic aperture imaging technology for ultrasonic spiral scanning detection of metal bars[J]. Acta Metall. Sin., 2024, 60(4): 559
doi: 10.11900/0412.1961.2022.00095
李振杰, 蔡桂喜, 张 博 等. 金属圆棒超声螺旋扫査检测的合成孔径成像技术[J]. 金属学报, 2024, 60(4): 559
doi: 10.11900/0412.1961.2022.00095
24 Cui H, Chen H N, Chen J, et al. Fea of evaluation material yield strength and strain hardening exponent using a spherical indentation[J]. Acta Metall. Sin., 2009, 45(2): 189
崔 航, 陈怀宁, 陈 静 等. 球形压痕法评价材料屈服强度和应变硬化指数的有限元分析[J]. 金属学报, 2009, 45(2): 189
25 Wu N. Study on fatigue behavior and fracture mechanism of aluminum/steel spot welded joints[J]. Machine China, 2023, (9): 108
吴 楠. 铝/钢点焊接头的疲劳行为及断裂机理研究[J]. 中国机械, 2023, (9): 108
26 Xu X, Li Z, Wan Z P, et al. Effect of long-term aging on properties of low expansion superalloy GH2909[J]. Chin. J. Mater. Res., 2021, 35(5): 330
doi: 10.11901/1005.3093.2020.314
徐 雄, 李 钊, 万志鹏 等. 长期时效对低膨胀高温合金GH2909性能的影响[J]. 材料研究学报, 2021, 35(5): 330
[1] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
[2] YUAN Xinyu, SHI Fei, LIU Jingxiao, ZHANG Haojie, YANG Dayi, WANG Meiyu, REN Ming. Effect of Er2O3 Addition on Crystallization Behavior and Properties of Lithium Disilicate Glass Ceramics[J]. 材料研究学报, 2025, 39(6): 455-462.
[3] WANG Henglin, DING Hanlin, CHAI Feng, LUO Xiaobing, WANG Zijian, XIANG Chongchen. Effect of Quenched-tempered Heat Treatment on Microstructure and Precipitation of High Strength Low Alloy Steel Containing Copper After Being Hot Rolled at Different Temperatures[J]. 材料研究学报, 2025, 39(6): 401-412.
[4] HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. 材料研究学报, 2025, 39(6): 474-480.
[5] QIU Wei, LI Yulin, YAN Rui, LI Yawen, CHEN Wei, GAN Lang, REN Yanjie, CHEN Jian. Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries[J]. 材料研究学报, 2025, 39(5): 389-400.
[6] WU Yucheng, ZUO Tong, TAN Xiaoyue, ZHU Xiaoyong, LIU Jiaqin. Oxidation Behavior of Self-passivated W-Cr-Zr Alloys as the First Wall Candidate Material[J]. 材料研究学报, 2025, 39(5): 343-352.
[7] HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites[J]. 材料研究学报, 2025, 39(5): 353-361.
[8] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
[9] FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. 材料研究学报, 2025, 39(4): 305-313.
[10] LI Honglei, LIU Chuang, LU Zhengwei, CHU Tianyi, CHEN Yuqiu, JIANG Sumeng, GONG Jun, PEI Zhiliang. Preparation and Performance of Ni-Al2O3/Diamond Composite Coating[J]. 材料研究学报, 2025, 39(4): 314-320.
[11] CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2025, 39(4): 272-280.
[12] XU Congmin, SUN Shuwen, ZHU Wensheng, CHEN Zhiqiang, LI Chengchen. Influence of Ternary Compound Biocides on Corrosion Behavior of P110 Steel[J]. 材料研究学报, 2025, 39(4): 281-288.
[13] HU Pengqin, WANG Dong, LU Yuzhang, ZHANG Jian. Effect of Thermal Processes on Creep Properties of a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2025, 39(3): 161-171.
[14] HU Ming, ZHANG Xinquan, LI Weiqiang, YANG Xiaokang, HUANG Jinhu, LEI Xiaofei, QIU Jianke, DONG Limin. Effect of Fe- and Cu-content on Microstructure and Mechanical Properties of TC10 Ti-alloy Bars[J]. 材料研究学报, 2025, 39(3): 217-224.
[15] YU Xingfu, XI Keyu, ZHANG Hongwei, WANG Quanzhen, HAO Tianci, ZHENG Dongyue, SU Yong. Effect of Post-diffusion Treatment on Microstructure and Properties of Plasma Nitriding 7Cr7Mo2V2Si Cold Work Mold Steel[J]. 材料研究学报, 2025, 39(3): 225-232.
No Suggested Reading articles found!