|
|
Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel |
YANG Liang1,2, CHUAI Rongyan1, XUE Dan1, LIU Fang2, LIU Kunlin2,3, LIU Chang2, CAI Guixi2,3( ) |
1.School of Information and Engineering, Shenyang University of Technology, Shenyang 110870, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel. Chinese Journal of Materials Research, 2025, 39(6): 435-442.
|
Abstract The microstructure, micro zone properties, fracture morphology, and mechanical properties of different areas for the resistance spot welding joint of SUS301L stainless steel are systematically characterized via microhardness tester, electronic tensile shear testing machine, SEM, and IBIS. The results indicate that the morphology of the fusion zone in the joint is elliptical and which can be differentiated into the base metal zone, heat affected zone, and nugget zone. The microstructure distribution from the edge of the fusion core to the core center is columnar structure and equiaxed structure in sequence. The main defects of the joint include sputters on the edge of the fusion core, shrinkage porosity in the fusion core, and micro cracks, and the sputtering phenomenon is closely related to the occurrence of shrinkage porosity. The size of the nugget diameter is a key indicator that affects the mechanical properties, and there is a positive correlation between the two. As the thickness of the double-layer plate increases, the maximum tensile and shear force increment caused by the increment of the unit nugget diameter also significantly increases. The hardness and strength of the heat affected zone are lower than those of the base metal zone and the fusion zone, which leads to the formation of a softening zone at the corona bond. Due to the lower strength of this zone, the tensile shear force it can bear is relatively small, making it the starting area for tensile shear cracking. The forms of tensile shear fracture may be differentiated into passing through-core fracture and along-core fracture, the nugget diameter will affect the fracture mode of the joint.
|
Received: 15 August 2024
|
|
Fund: National Natural Science Foundation of China(61372019);Basic Scientific Research Project by the Liaoning Provincial Department of Education(LJKMZ20220478);Liaoning Province Science and Technology Plan Joint Program (Applied Basic Research Project)(2023JH2/101700279) |
Corresponding Authors:
CAI Guixi, Tel: 13709823129, E-mail: gxcai@imr.ac.cn
|
1 |
Hu T H, Wu T H, Pan H, et al. Progress in welding techniques to steel-aluminum alloy dissimilar welding joints[J]. J Iron Steel Res., 2023, 35(8): 928
|
|
胡天寒, 吴天海, 潘 华 等. 钢/铝异种材料接头焊接技术研究进展[J]. 钢铁研究学报, 2023, 35(8): 928
|
2 |
Hu J M, Bi J, Liu H W, et al. Prediction of resistance spot welding quality based on BPNN optimized by improved sparrow search algorithm[J]. Mater., 2022, 15(20): 7323
|
3 |
Tang J X, Wu M X, Shi L, et al. Aluminum/copper dissimilar metal double-sided friction stir welding formation and mechanical properties of joint[J]. Chin. J. Nonferr. Metal., 2022, 32(9): 2556
|
|
唐九兴, 吴明孝, 石 磊 等. 铝/铜异种金属双面搅拌摩擦焊接成形及接头力学性能[J]. 中国有色金属学报, 2022, 32(9): 2556
|
4 |
Chen Y J, Li S W, Meng X M, et al. Research progress of resistance spot welding of aluminum/steel dissimilar metals[J]. Mater. Rep., 2023, 37(13): 209
|
|
陈亚军, 李思伟, 孟宪明 等. 铝/钢异种材料电阻点焊研究进展[J]. 材料导报, 2023, 37(13): 209
|
5 |
Ao S, Shan H, Cui X T, et al. Effect of specimen width on the failure behavior in resistance spot weld tensile shear testing[J]. Weld. World, 2016, 60: 1095
|
6 |
Chung K, Noh W, Yang X, et al. Practical failure analysis of resistance spot welded advanced high-strength steel sheets[J]. Int. J. Plasticity, 2017, 94: 122
|
7 |
Liu J, Xu G, Ren L, et al. Simulation analysis of ultrasonic detection for resistance spot welding based on COMSOL Multiphysics[J]. J. Adv. Manufact. Technol., 2017, 93: 2089
|
8 |
Yi R T, Zhao D W, Wang Y X. Digital simulation of resistance spot welding considering the influence of phase transition[J]. Trans. Chin. Weld. Institu., 2013, 34(10): 71
|
|
易荣涛, 赵大伟, 王元勋. 考虑相变影响的电阻点焊数字模拟[J]. 焊接学报, 2013, 34(10): 71
|
9 |
FunabikiYuta, IyotaMuneyoshi, ShobuTakahisa, et al. Convection and joint characteristics in aluminum alloy melting zone during resistance spot welding of dissimilar Fe-Al material in external magnetic field[J]. J. Manufact. Proc., 2024, 115: 40
|
10 |
Arinez J F, Chang Q, Gao R X, et al. Artificial intelligence in advanced manufacturing: Current status and future outlook[J]. J. Manufact. Sci. Eng., 2020, 142: 111003
|
11 |
Zhou G R. Numerical simulation and metallographic study of resistance spot welding of high strength steel[J]. Mach. Build. Automa., 2019, 48(1): 142
|
|
周国荣. 高强钢电阻点焊数值模拟及金相研究[J]. 机械制造与自动化, 2019, 48(1): 142
|
12 |
Chen Y D, Chen F R. Microstructure and mechanical property of resistance spot welded joint of dissimilar steels of TRIP 980 high strength steel and SPCC low carbon steel[J]. Chin. J. Mater. Res, 2018, 32(3): 216
doi: 10.11901/1005.3093.2017.268
|
|
岑耀东, 陈芙蓉. TRIP980高强钢/SPCC低碳钢的异种钢板电阻点焊接头组织及力学性能研究[J]. 材料研究学报, 2018, 32(3): 216
doi: 10.11901/1005.3093.2017.268
|
13 |
Mvola B, Kah P, Martikainen J, et al. Dissimilar high- strength steels: fusion welded joints, mismatches, and challenges[J]. Rev. Adv. Mater. Sci., 2016, 44: 146
|
14 |
Liu J, Xu G, Ren L, et al. Defect intelligent identification in resistance spot welding ultrasonic detection based on wavelet packet and neural network[J]. Inter. J. Adv. Manufact. Tech., 2017, 90: 2581
|
15 |
Jiang Y L, Yang L, Han X H, et al. Study on cracking and fatigue property of stainless steel resistance spot welding under different conditions[J]. Chin. Mechan. Eng., 2021, 32(14): 1726
|
|
姜云禄, 杨 亮, 韩晓辉 等. 运行条件对不锈钢点焊疲劳性能影响及开裂分析[J]. 中国机械工程, 2021, 32(14): 1726
|
16 |
Mao Z D, Kan Y, Jiang Y L, et al. Overall residual stresses in the resistance spot welding joint of dissimilar aluminum alloys[J]. J. Mechan. Eng., 2020, 56(16): 84
|
|
毛镇东, 阚 盈, 姜云禄 等. 异种铝合金电阻点焊接头全场残余应力研究[J]. 机械工程学报, 2020, 56(16): 84
doi: 10.3901/JME.2020.16.084
|
17 |
Luo Z, Dong J W, Hu J M. Optimization of resistance spot welding quality prediction based on improved sparrow search algorithm for BPNN[J]. J. Tianjin Univ. (Sci. Tech.), 2024, 57(5): 445
|
|
罗 震, 董建伟, 胡建明. 基于改进麻雀搜索算法优化BPNN的电阻点焊质量预测[J]. 天津大学学报(自然科学与工程技术版), 2024, 57(5): 445
|
18 |
Guo T J, Zhang Q X, Sun X G, et al. Influence of adhesive sealant on resistance spot welding of stainless steel sheets with different thickness[J]. Chin. Mech. Eng., 2018, 29(24): 3009
|
|
郭太吉, 张庆鑫, 孙晓光 等. 密封胶对差厚不锈钢板电阻点焊接头的影响[J]. 中国机械工程, 2018, 29(24): 3009
|
19 |
Sun D Q, Zhang Y Y, Su L, et al. Effects of electrode morphology on microstructures and mechanical properties of spot welded Al-steel joints[J]. J. Mechan. Eng., 2016, 52(24): 36
|
|
孙大千, 张月莹, 苏 雷 等. 电极形状对铝-钢点焊接头组织及力学性能的影响[J]. 机械工程学报, 2016, 52(24): 36
doi: 10.3901/JME.2016.24.036
|
20 |
Cheng J L, Cheng D H, Qi A T, et al. Microstructure and mechanical properties of AZ31B magnesium alloy / 304 stainless steel resistance spot weld joint with high entropy alloy powder[J]. J. Mater. Eng., 2024, 52(1): 146
|
|
成家龙, 程东海, 亓安泰 等. 添加高熵合金粉末AZ31B镁合金/304不锈钢电阻点焊接头组织和力学性能[J]. 材料工程, 2024, 52(1): 146
doi: 10.11868/j.issn.1001-4381.2023.000615
|
21 |
Pashazadeh H, Gheisari Y, Hamedi M. Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm[J]. J. Intell. Manuf., 2016, 27: 549
|
22 |
Yang L, Chuai R, Cai G, et al. Ultrasonic non-destructive testing and evaluation of stainless-steel resistance spot welding based on spiral C-scan technique[J]. Sensors, 2024, 24(15): 4771
|
23 |
Li Z J, Cai G X, Zhang B, et al. Synthetic aperture imaging technology for ultrasonic spiral scanning detection of metal bars[J]. Acta Metall. Sin., 2024, 60(4): 559
doi: 10.11900/0412.1961.2022.00095
|
|
李振杰, 蔡桂喜, 张 博 等. 金属圆棒超声螺旋扫査检测的合成孔径成像技术[J]. 金属学报, 2024, 60(4): 559
doi: 10.11900/0412.1961.2022.00095
|
24 |
Cui H, Chen H N, Chen J, et al. Fea of evaluation material yield strength and strain hardening exponent using a spherical indentation[J]. Acta Metall. Sin., 2009, 45(2): 189
|
|
崔 航, 陈怀宁, 陈 静 等. 球形压痕法评价材料屈服强度和应变硬化指数的有限元分析[J]. 金属学报, 2009, 45(2): 189
|
25 |
Wu N. Study on fatigue behavior and fracture mechanism of aluminum/steel spot welded joints[J]. Machine China, 2023, (9): 108
|
|
吴 楠. 铝/钢点焊接头的疲劳行为及断裂机理研究[J]. 中国机械, 2023, (9): 108
|
26 |
Xu X, Li Z, Wan Z P, et al. Effect of long-term aging on properties of low expansion superalloy GH2909[J]. Chin. J. Mater. Res., 2021, 35(5): 330
doi: 10.11901/1005.3093.2020.314
|
|
徐 雄, 李 钊, 万志鹏 等. 长期时效对低膨胀高温合金GH2909性能的影响[J]. 材料研究学报, 2021, 35(5): 330
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|