Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (5): 373-380    DOI: 10.11901/1005.3093.2021.110
ARTICLES Current Issue | Archive | Adv Search |
Surface Metallization of Carbon Nanotube Film for Flexible Lithium-ion Batteries with High Output Current
ZHAO Chaofeng, ZHENG Xiaoyan, LI Kairui, JIA Shikui, ZHANG Ming, LI Yesheng(), WU Ziping
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
Cite this article: 

ZHAO Chaofeng, ZHENG Xiaoyan, LI Kairui, JIA Shikui, ZHANG Ming, LI Yesheng, WU Ziping. Surface Metallization of Carbon Nanotube Film for Flexible Lithium-ion Batteries with High Output Current. Chinese Journal of Materials Research, 2022, 36(5): 373-380.

Download:  HTML  PDF(13155KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The CNTs/metal composite film with excellent electrical conductivity was prepared by magnetron sputtering technique. the electrical conductivity of the CNTs/metal composite film can reach 10 times than that of the as-prepared CNT macrofilm (CMF, 300 S·cm-1). In addition, a flexible LIBs with this film as the current collector was prepared, which, in comparison with the flexible LIBs with the simple CNTs film, presents higher rate capability. Moreover, its specific capacity can still be maintained at 132.6 mAh·g-1 at a rate of 5 C, high-rate cycling performance i.e. 74.4% capacity retention rate after 200 cycles at 5 C rate, and larger output current up to 0.4 A.

Key words:  composite      flexible lithium-ion batteries      high output current      surface metallization      carbon nanotube     
Received:  22 January 2021     
ZTFLH:  TQ131  
Fund: National Natural Science Foundation of China(51861009);Key Science and Technology Project of Jiangxi Provincial Department of Education(GJJ160596)
About author:  LI Yesheng, Tel: 13979768972, E-mai: nfyyliyesheng@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.110     OR     https://www.cjmr.org/EN/Y2022/V36/I5/373

Fig.1  Schematic diagram of the preparation process (a) the preparation process of the CMF@Al, (b) the morphology of CMF, (c) the morphology of CMF@Al, (d) the flexibility, (e) the lightweight and (f) the operation of the CMF@Al
Fig.2  Microstructure, electrical conductivity and the adhesion (a) the surface, (b) cross section of the CMF@Al, (c) the surface, (d) cross section of the CMF@Cu, the cross section of LCO electrode based on (e) CMF@Al and (f) Al foil current collectors, the relationship between electrical conductivity and coating thickness of (g) CMF@Al and (h) CMF@Cu, (i) the sheet resistance based on different current collectors
Fig.3  Electrochemical performance of full cell (a) the first cycle at 0.1 C, (b) rate capability, discharge curve of full cell based on (c) CMF@Al-CMF@Cu and (d) Al-Cu, (e) cycling performance of different batteries
Fig.4  Demonstration of the output current and voltage of the flexible LIBs (a) open circuit voltage and (c) output current and voltage based on CMF@Al-CMF@Cu, (b) open circuit voltage and (d) output current and voltage based on CMF-CMF
Fig.5  Schematic diagram of mechanism, the mechanism of Al foil (a) and CMF@Al (b), CV curves (c), Nyquist plots (d) and polarization curves of 200 cycles at 5 C (e)
1 Lee S Y, Choi K H, Choi W S, et al. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries [J]. Energy Environ. Sci., 2013, 6: 2414
doi: 10.1039/c3ee24260a
2 Gwon H, Hong J, Kim H, et al. Recent progress on flexible lithium rechargeable batteries [J]. Energy Environ. Sci., 2014, 7: 538
doi: 10.1039/C3EE42927J
3 Jia S K, Yang B Z, Zhao C F, et al. Tab engineering-mediated resistance of flexible lithium-ion batteries for high output current [J]. J. Energy Chem., 2021, 58: 264
doi: 10.1016/j.jechem.2020.10.018
4 Zhou G M, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects [J]. Energy Environ. Sci., 2014, 7: 1307
doi: 10.1039/C3EE43182G
5 Nitta N, Wu F X, Lee J T, et al. Li-ion battery materials: present and future [J]. Mater. Today, 2015, 18: 252
doi: 10.1016/j.mattod.2014.10.040
6 Fang Z H, Wang J, Wu H C, et al. Progress and challenges of flexible lithium ion batteries [J]. J. Power Sources, 2020, 454: 227932
doi: 10.1016/j.jpowsour.2020.227932
7 Zhang Y, Jiao Y D, Liao M, et al. Carbon nanomaterials for flexible lithium ion batteries [J]. Carbon, 2017, 124: 79
doi: 10.1016/j.carbon.2017.07.065
8 Wu Z P, Wang Y L, Liu X B, et al. Carbon‐nanomaterial‐based flexible batteries for wearable electronics [J]. Adv. Mater., 2019, 31: 1800716
doi: 10.1002/adma.201800716
9 Huang Q J, Zhu Y. Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications [J]. Adv. Mater. Technol., 2019, 4: 1800546
doi: 10.1002/admt.201800546
10 Kang C W, Patel M, Rangasamy B, et al. Three-dimensional carbon nanotubes for high capacity lithium-ion batteries [J]. J. Power Sources, 2015, 299: 465
doi: 10.1016/j.jpowsour.2015.08.103
11 Yi Z, Lin N, Zhao Y Y, et al. A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes [J]. Energy Stor. Mater., 2019, 17: 93
12 Song L, Hu C G, Xiao Y, et al. An ultra-long life, high-performance, flexible Li-CO2 battery based on multifunctional carbon electrocatalysts [J]. Nano Energy, 2020, 71: 104595
doi: 10.1016/j.nanoen.2020.104595
13 Yu Y, Luo Y F, Wu H C, et al. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries [J]. Nanoscale, 2018, 10: 19972
doi: 10.1039/C8NR05241G
14 Liu T, Zhang M, Wang Y L, et al. Engineering the surface/interface of horizontally oriented carbon nanotube macrofilm for foldable lithium‐ion battery withstanding variable weather [J]. Adv. Energy Mater., 2018, 8: 1802349
doi: 10.1002/aenm.201802349
15 Wang Q H, Zhong S W, Hu J W, et al. Potential threshold of anode materials for foldable lithium-ion batteries featuring carbon nanotube current collectors [J]. J. Power Sources, 2016, 310: 70
doi: 10.1016/j.jpowsour.2016.02.004
16 Zhang M, Wang Z Y, Luo Q, et al. Highly activated carbon nanotube sponges deposited with sulfur for lithium-sulfur batteries [J]. Chin. J. Mater. Res., 2021, 35: 65
张 明, 王志勇, 罗 琴 等. 基于高活性碳纳米管海绵体载硫的锂硫电池 [J]. 材料研究学报, 2021, 35: 65
17 Cao J, Chen C, Zhao Q, et al. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations [J]. Adv. Mater., 2016, 28: 9629
doi: 10.1002/adma.201602262
18 Wu J, Chen B, Liu Q Q, et al. Preparation of reduced graphene oxide macro body and its electrochemical energy storage performance [J]. Colloids Surf., 2019, 582A: 123859
19 Yan Y R, Li C L, Liu C, et al. Bundled and dispersed carbon nanotube assemblies on graphite superstructures as free-standing lithium-ion battery anodes [J]. Carbon, 2019, 142: 238
doi: 10.1016/j.carbon.2018.10.044
20 Xiao P T, Bu F X, Yang G H, et al. Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices [J]. Adv. Mater., 2017, 29: 1703324
doi: 10.1002/adma.201703324
21 Mo R W, Rooney D, Sun K N, et al. 3D holey-graphene frameworks cross-linked with encapsulated mesoporous amorphous FePO4 nanoparticles for high-power lithium-ion batteries [J]. Chem. Eng. J., 2021, 417: 128475
doi: 10.1016/j.cej.2021.128475
22 Wang K, Luo S, Wu Y, et al. Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries [J]. Adv. Funct. Mater., 2013, 23: 846
doi: 10.1002/adfm.201202412
23 Kim H, Ahn J H. Graphene for flexible and wearable device applications [J]. Carbon, 2017, 120: 244
doi: 10.1016/j.carbon.2017.05.041
24 Ni J F, Li Y. Carbon nanomaterials in different dimensions for electrochemical energy storage [J]. Adv. Energy Mater., 2016, 6: 1600278
doi: 10.1002/aenm.201600278
25 Mu K W, Liu K X, Wang Z Y, et al. An electrolyte-phobic carbon nanotube current collector for high-voltage foldable lithium-ion batteries [J]. J. Mater. Chem., 2020, 8A: 19444
26 Romanov S A, Alekseeva A A, Khabushev E M, et al. Rapid, efficient, and non-destructive purification of single-walled carbon nanotube films from metallic impurities by Joule heating [J]. Carbon, 2020, 168: 193
doi: 10.1016/j.carbon.2020.06.068
27 Wang B W, Jiang S, Zhu Q B, et al. Continuous fabrication of meter‐scale single‐wall carbon nanotube films and their use in flexible and transparent integrated circuits [J]. Adv. Mater., 2018, 30: 1802057
doi: 10.1002/adma.201802057
28 Urper O, Çakmak İ, Karatepe N. Fabrication of carbon nanotube transparent conductive films by vacuum filtration method [J]. Mater. Lett., 2018, 223: 210
doi: 10.1016/j.matlet.2018.03.184
29 Nelyub V A. Technologies of metallization of carbon fabric and the properties of the related carbon fiber reinforced plastics [J]. Russ. Metall., 2018, 2018: 1199
doi: 10.1134/S0036029518130189
30 Che H Q, Gagné M, Rajesh P S M, et al. Metallization of carbon fiber reinforced polymers for lightning strike protection [J]. J. Mater. Eng. Perform., 2018, 27: 5205
doi: 10.1007/s11665-018-3609-y
31 Zhang Z X, Wang H, Zhang Y X, et al. Carbon nanotube/hematite core/shell nanowires on carbon cloth for supercapacitor anode with ultrahigh specific capacitance and superb cycling stability [J]. Chem. Eng. J., 2017, 325: 221
doi: 10.1016/j.cej.2017.05.045
32 Wu Z P, Xu Q F, Wang J N, et al. Preparation of large area double-walled carbon nanotube macro-films with self-cleaning properties [J]. J. Mater. Sci. Technol., 2010, 26: 20
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!