Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (10): 770-776    DOI: 10.11901/1005.3093.2020.132
ARTICLES Current Issue | Archive | Adv Search |
Influence of Heat Treatment on Photocatalytic Activity of Ag-ZnO Heterostructure
ZHU Xiaodong1, WANG Juan1, MA Yang1, LUO Jianjun2, YU Lin2, FENG Wei1()
1. School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
2. Sichuan Yiran New Material Technology Co. Ltd. , Chengdu 610105, China
Cite this article: 

ZHU Xiaodong, WANG Juan, MA Yang, LUO Jianjun, YU Lin, FENG Wei. Influence of Heat Treatment on Photocatalytic Activity of Ag-ZnO Heterostructure. Chinese Journal of Materials Research, 2020, 34(10): 770-776.

Download:  HTML  PDF(10098KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pure ZnO and Ag-modified ZnO composite photocatalysts were prepared by sol-gel method and subsequently heat treated at 400℃, 450℃ and 500℃ respectively for 2 h. The samples were characterized by XRD, SEM, TEM, XPS, PL and BET, respectively. The results show that both pure ZnO and Ag-ZnO are hexagonal wurtzite crystal structures. Ag particles deposit on the surface of ZnO, forming Ag-ZnO heterostructure. The photocatalytic activity of samples was assessed through the degradation of Rhodamine B. The results show that the heat treatment temperature has a great influence on the photocatalytic performance of pure ZnO, while the pure ZnO annealed at 450℃ exhibits the best photocatalytic activity. However, the annealing temperature has negligible impact on the photocatalytic activity of Ag-ZnO and all of the Ag-ZnO samples show better photocatalytic activity than that of the pure ZnO. The enhancement in photocatalytic activity of Ag-ZnO can be attributed to the effect of suppressing the recombination of photogenerated pairs and the increase of surface hydroxyl content. The degradation rate of RhB for the Ag-ZnO annealed at 500℃ is 98% after 60 min and the reaction rate constant is 0.063 min-1.

Key words:  composite      ZnO      Ag modification      photocatalytic activity      sol-gel method     
Received:  20 April 2020     
ZTFLH:  TB34  
Fund: Applied Basic Research Programs of Sichuan Province(19YJ0664);Applied Basic Research Programs of Sichuan Province(2018JY0062);Training Program for Innovation of Chengdu University(CDU-CX-2020028);Training Program for Innovation of Chengdu University(CDU-CX-2020034)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.132     OR     https://www.cjmr.org/EN/Y2020/V34/I10/770

Fig.1  XRD patterns of pure ZnO and Ag-ZnO
Fig.2  SEM images of pure ZnO (a, b) and Ag-ZnO (c, d) annealed at 500℃
Fig.3  TEM (a) and HRTEM (b) images of Ag-ZnO annealed at 500℃
Fig.4  XPS spectra of pure ZnO and Ag-ZnO annealed at 500℃
Fig.5  Degradation rate curves of RhB for pure ZnO and Ag-ZnO
Fig.6  Photodegradation kinetics curves of pure ZnO and Ag-ZnO on RhB
Fig.7  PL spectra of pure ZnO and Ag-ZnO
Fig.8  Schematic diagram of photocatalytic degradation of RhB by Ag-ZnO
[1] Lu J, Wang H H, Dong S J, et al. Effect of Ag shapes and surface compositions on the photocatalytic performance of Ag/ZnO nanorods [J]. J. Alloys Compd., 2014, 617: 869
doi: 10.1016/j.jallcom.2014.08.096
[2] Xie L, Wang P, Li Z Fet al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(10): 728
谢亮, 王平, 李之锋等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(10): 728
[3] Yu Y, Yao B H, Yang F, et al. Preparation and photocatalytic properties of TiO2-ZnO composite hollow microspheres [J]. Acta Mater. Compos. Sin., 2019, 36(1): 200
于艳, 姚秉华, 杨帆等. TiO2-ZnO复合中空微球的制备及光催化性能 [J]. 复合材料学报, 2019, 36(1): 200
[4] Chang Y C, Guo J Y. ZnO/Pt core-shell nanorods on the cotton threads with high enhanced photocatalytic properties [J]. Mater. Chem. Phys., 2016, 180: 9
doi: 10.1016/j.matchemphys.2016.06.013
[5] Guy N, Ozacar M. The influence of noble metals on photocatalytic activity of ZnO for Congo red degradation International [J]. Int.J. Hydrogen Energ., 2016, 41: 20100
[6] Jung H J, Koutavarapu R, Lee S K, et al. Enhanced photocatalytic activity of Au-doped Au@ZnO core-shell flower-like nanocomposites [J]. J. Alloys Compd., 2018, 735: 2058
doi: 10.1016/j.jallcom.2017.11.378
[7] Yang W S, Jian S J, Zuo T, et al. Preparation of Ag/ ZnO composite hollow material and photocatalytic degradation for Rhodamine B [J]. New Chem. Mater., 2018, 46(1): 140
杨为森, 简绍菊, 左甜等. Ag/ZnO复合中空材料的制备及光催化降解罗丹明B [J]. 化工新型材料, 2018, 46(1): 140
[8] Jia Z G, Peng K K, Li Y H, et al. Preparation and photocatalytic performance of porous ZnO microrods loaded with Ag [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 873
doi: 10.1016/S1003-6326(11)61259-4
[9] Dong Y Y,Jiao Y Q,Jiang B J, et al. Commercial ZnO and its hybrid with Ag nanoparticles: Photocatalytic performance and relationship with structure [J]. Chem. Phys. Lett., 2017, 679: 137
[10] Muñoz-Fernandez L, Sierra-Fernandez A, Miloševic´ O, et al. Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation [J]. Adv. Powder Technol., 2016, 27: 983
[11] Zhao X H, Su S, Wu G L, et al. Facile synthesis of the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres with enhanced photocatalytic performance [J]. Appl. Surf. Sci., 2017, 406: 254
[12] Bouzid H, Faisal M, Harraz F A, et al. Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity [J]. Catal. Today, 2015, 252: 20
[13] Meng A, Li X J, Wang X L, et al. Preparation, photocatalytic properties and mechanism of Fe or N-doped Ag/ZnO nanocomposites [J]. Ceram. Int., 2014, 40: 9303
[14] Liu Y S, Gao W, Zhang C. In situ formation of Ag/ZnO heterostructure arrays during synergistic photocatalytic process for SERS and photocatalysis [J]. J. Taiwan Inst. Chem. E., 2018, 88: 277
[15] Liu H R, Hu Y C, Zhang Z X, et al. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation [J]. Appl. Surf. Sci., 2015, 355: 644
[16] Intarasuwan K, Amornpitoksuk P, Suwanboon S, et al. Effect of Ag loading on activated carbon doped ZnO for bisphenol A degradation under visible light [J]. Adv. Powder Technol., 2018, 29: 2608
[17] Zhang L L, Zhu D, He H X, et al. Enhanced piezo/solar-photocatalytic activity of Ag/ZnO nanotetrapods arising from the coupling of surface plasmon resonance and piezophototronic effect [J]. J. Phys. Chem. Solids, 2017, 102: 27
[18] Demirci S, Dikici T, Yurddaskal M, et al. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances [J]. Appl. Surf. Sci., 2016, 390: 591
[19] Jiang H Q, Liu Y D, Li J S, et al.Synergetic effects of lanthanum, nitrogen and phosphorus tri-doping on visible-light photoactivity of TiO2 fabricated by microwave-hydrothermal process [J]. J. Rare Earth., 2016, 34(6): 604
[20] Jaramillo-Páez C, Navío J A, Hidalgo M C, et al. High UV-photocatalytic activity of ZnO and Ag/ZnO synthesized by a facile method [J]. Catal. Today, 2017, 284: 121
[21] Chen F, Tang Y Z, Liu C B, et al. Synthesis of porous structured ZnO/Ag composite fibers with enhanced photocatalytic performance under visible irradiation [J]. Ceram. Int., 2017, 43: 14525
[22] Wang M, Xu J Y, Sun T M, et al.Facile photochemical synthesis of hierarchical cake-like ZnO/Ag composites with enhanced visible-light photocatalytic activities [J]. Mater. Lett., 2018, 219: 236
[23] Sampaio M J, Lima M J,Baptista D L, et al. Ag-loaded ZnO materials for photocatalytic water treatment [J]. Chem. Eng. J., 2017, 318: 95
[24] Yang Y Q, Li H X, Hou F L, et al. Facile synthesis of ZnO/Ag nanocomposites with enhanced photocatalytic properties under visible light [J]. Mater. Lett., 2016, 180: 97
[25] Hossein F, Kasaeian A, Pourfayaz F, et al. Novel ZnO-Ag/MWCNT nanocomposite for the photocatalytic degradation of phenol [J]. Mater. Sci. Semicon. Proc., 2018, 83: 175
[26] Rajaboopathi S, Thambidurai S. Enhanced photocatalytic activity of Ag-ZnO nanoparticles synthesized by using Padina gymnospora seaweed extract [J]. J. Mol. Liq., 2018, 262: 148
doi: 10.1016/j.molliq.2018.04.073
[27] Georgekutty R, Seery M K, Pillai S C. A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism [J]. J. Phys. Chem. C, 2008, 112: 13563
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!