Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (4): 304-310    DOI: 10.11901/1005.3093.2019.450
ARTICLES Current Issue | Archive | Adv Search |
Synergistic Effect of Aramid Pulp and Nano Sodium Titanate Whisker in Friction Materials for Automotive
GUO Ke1,2, ZHANG Zhiqiang1(), SONG Renbo3, XU Jie3, YU Haonan3
1.School of Chemical Engineering, Liaoning University of Science and Technology, Anshan 117022, China
2.Ansteel Group Mining Design & Research Institute, Anshan 114004, China
3.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

GUO Ke, ZHANG Zhiqiang, SONG Renbo, XU Jie, YU Haonan. Synergistic Effect of Aramid Pulp and Nano Sodium Titanate Whisker in Friction Materials for Automotive. Chinese Journal of Materials Research, 2020, 34(4): 304-310.

Download:  HTML  PDF(11830KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Friction materials were prepared based on a simple formulation with six ingredients (phenolic resin, aramid pulp, nano sodium titanate whisker, alumina, barite, molybdenum disulfide). Hardness, impact strength, friction coefficient, wear rate, and morphology of sliding surfaces were carefully examined to investigate the effect of the two different fibrous ingredients, i.e. aramid pulp and nano sodium titanate whisker, in the friction material on various physical and mechanical properties and friction properties. The results show that the Rockwell hardness of friction material increased with the increase of the content of aramid pulp in the formula. When the ratio of aramid pulp to sodium titanate whisker is 3:1, the maximum impact strength of the material reached 0.392 J/cm2. The uniform mixing of two reinforcing fibers provided a basis for the formation of high cohesion friction film during the friction process. When the ratio was 0.75, the best synergistic effect was obtained. At this time the friction coefficient was stable between 0.38 and 0.45, and the wear rate was 5%.

Key words:  composite      synergistic effects      friction film      aramid pulp      nano sodium titanate whisker     
Received:  20 September 2019     
ZTFLH:  U465  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.450     OR     https://www.cjmr.org/EN/Y2020/V34/I4/304

Density

/g·cm-3

Fusion point

/℃

Specific heat capacity

/kJ·kg-1·K-1

Coefficient of thermal expansion

/m·℃-1

Hardness

/HM

Elasticity modulus

/GPa

3.8913000.446.5×10-64275
Table 1  Physical properties of Nanometer sodium titanate whisker
Fig.1  SEM of sodium titanate whisker (a) low magnification, (b) high magnification
IngredientAP-0AP-0.25AP-0.5AP-0.75AP-1
PR1717171717
AlO33333
MoS55555
B4545454545
AP07.51522.530
ST3022.5157.50
Rate/[AP/AP+ST]00.250.50.751
Table 2  Different prescriptions of friction material (volume fraction, %)
Fig.2  Manufacturing and preparation process of friction material
Fig.3  Process route of hot briquetting
Fig.4  Process route of heat treatment
Fig.5  Variation curve of mechanical properties of different samples
Fig.6  Relationship between wear rate of different samples and temperatures
Fig.7  Wear rate of different samples
Fig.8  Binding morphology of AP and ST
Fig.9  Morphology of different samples after friction test (a) AP-0; (b) AP-0.25; (c) AP-0.5; (d) AP-0.75; (e) AP-1
Fig.10  Morphologies of wear particle of different samples (a) AP-0; (b) AP-0.25; (c) AP-0.5; (d) AP-0.75; (e) AP-1
[1] Bijwe J. Composites as friction materials: Recent developments in non‐asbestos fiber reinforced friction materials [J]. Polymer Composites, 2010, 18(3): 378
[2] Kim S J, Cho M H, Basch R H, et al. Tribological Properties of Polymer Composites Containing Barite (BaSO4) or Potassium Titanate (K2O·6TiO2) [J]. Tribology Letters, 2004, 17(3): 655
[3] Park J H, Jin O C, Kim H R. Friction characteristics of brake pads with aramid fiber and acrylic fiber [J]. Industrial Lubrication & Tribology, 2010, 62(2): 91
[4] Aranganathan N, Mahale V, Bijwe J. Effects of aramid fiber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests [J]. Wear, 2016, s 354-355: 69
[5] Chan D, Stachowiak G W. Review of automotive brake friction materials [J]. Proceedings of the Institution of Mechanical Engineers D: Journal of Automobile Engineering, 2004, 218(9): 953
[6] Kato Takahisa, Magario Akira. The wear of aramid fiber reinforced brake pads: the role of aramid fibers [J]. ASLE Transactions, 2008, 37(3): 559
[7] Liu B W, Xu F, Liu Y, et al. Influences of potassium titanate content on the performance of automobile brake materials [J]. Materials Review, 2017, 31(12): 45
(刘伯威, 徐菲, 刘咏等. 钛酸钾含量对汽车摩擦材料性能的影响 [J]. 材料导报, 2017, 31(12): 45)
[8] Wang X. Preparation and characterization of potassium titanate and multi-reforced on environment-friendly brake pads [D]. Hefei:Hefei University of Technology, 2016
(王旭. 六钛酸钾晶须及多维增强环保型刹车片的制备与表征 [D]. 合肥:合肥工业大学, 2016)
[9] Park J H, Jin O C, Kim H R. Friction characteristics of brake pads with aramid fiber and acrylic fiber [J]. Industrial Lubrication & Tribology, 2010, 62(2): 91
[10] Tang C F, Lu Y. Combinatorial screening of ingredients for steel wool based semimetallic and aramid pulp based nonasbestos organic brake materials [J]. Journal of Reinforced Plastics & Composites, 2004, 23(23): 51
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!