|
|
Effect of Copper Content and Sintering Temperature on Friction and Wear Properties of Powder-metallurgical Fe-Cu Based Composites |
SHI Lei1,ZHAO Qi1( ),LUO Cheng1,CHEN Hao1,YANG Jibiao1,ZHANG Xiaodong2,LI Xianbin2 |
1. School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002,China 2. Dongfeng Powder Metallurgy Company, Dongfeng Motor Parts and Components (Group) Co. Ltd. , Shiyan 442700, China |
|
Cite this article:
SHI Lei,ZHAO Qi,LUO Cheng,CHEN Hao,YANG Jibiao,ZHANG Xiaodong,LI Xianbin. Effect of Copper Content and Sintering Temperature on Friction and Wear Properties of Powder-metallurgical Fe-Cu Based Composites. Chinese Journal of Materials Research, 2020, 34(2): 137-150.
|
Abstract The effect of Cu content and sintering temperature on the friction and wear properties of powder-metallurgical Fe-Cu based composites was investigated. The results show that the wear resistance first increases with the increase of Cu content within a range of 20%~60% Cu. Then the wear resistance reaches the optimum with the average friction coefficient of 0.172 and wear loss of 0.007 g for the composite with 40% Cu. However, the wear resistance begins to decrease when the Cu content further increases. Similarly, the wear resistance first increases with the increase of sintering temperature within the range of 1096~1296oC. Then the wear resistance achieves the optimum with the average friction coefficient of 0.123 and wear loss of 0.0018 g for the composite sintered at 1196oC. When sintering at higher temperatures, the wear resistance decreases again. During sintering with optimal process parameters, the molten Al may form solid solution with Fe and Cu, which improves the density and strength of the composite. Meanwhile, the decomposition of MnS yields atomic Mn, which mainly forms solid solution with Fe. Also, a part of C in the composite also forms solid solution with Fe. The above facts may in turn generate the solid solution strengthening of the Fe-Cu based alloy. Besides, there exists residual elemental carbon in the Fe-Cu based alloy, which enhances the lubrication of the alloy. After sintering, the grains of Cu become finer presenting as a network in the Fe based matrix. The excellent wear resistance of Fe-Cu based composite can be attributed to the special functions of the individual component of the composite.
|
Received: 01 July 2019
|
|
Fund: PhD Research Startup Foundation of Hubei University of Automotive Technology(BK201702);Hubei Provincial Natural Science Foundation of China(2018CFB177);Key Laboratory of Automotive Power Train and Electronics (Hubei University of Automotive Technology),and Undergraduate Training for Innovation and Entrepreneurship(DC2019052) |
[1] | Wells T C. Friction materials in aerospace application [J]. Powder Metallurgy, 1992, 5(4): 257 | [2] | Cho K H, Jang H, Hong Y S, et al. The size effect of zircon particles on the friction characteristics of brake lining materials [J].Wear, 2008, 264(3-4): 291 | [3] | Yang M. Effects of Al and Zr on microstructure and properties of Fe-18Cu-based friction materials for powder metallurgy [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 1 | [3] | (杨明. Al、Zr对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响 [D]. 南京: 南京航空航天大学, 2011: 1) | [4] | Yao P P, Xiong X, Huang B Y, et al. Effects of copper content on friction and wear properties of ferro-based powder metallurgy aviation brake materials [J]. Nonmetallic Minerals,2001, 24(4): 52 | [4] | (姚萍屏, 熊 翔, 黄伯云等. 铜含量对铁基粉末冶金航空刹车材料摩擦磨损性能的影响 [J]. 非金属矿, 2001, 24(4): 52) | [5] | Ren J, Cui G J, Lu Z X. Experimental study on tribological characterstrics of friction plate for belt conveyor [J]. Science Technology and Engineering, 2017, 17(30): 223 | [5] | (任剑, 崔功军, 鲁张祥. Cu-Fe基摩擦片摩擦磨损性能的实验研究 [J]. 科学技术与工程, 2017, 17(30): 223) | [6] | Zhao X, Hao J J, Peng K, et al. Friction and wear behavior of Cu-based P/M friction materials with Cr-Fe as friction components. [J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(6): 935 | [6] | (赵翔, 郝俊杰, 彭坤等. Cr-Fe为摩擦组元的铜基摩擦材料的摩擦磨损性能 [J]. 粉末冶金材料科学与工程, 2014, 19(6): 935) | [7] | Lu Z Q, Zhan Z G. Preparation and properties of powdered sintered Fe-Cu multielement alloy [D]. Qinhuangdao: Yanshan University, 2015: 1 | [7] | (吕自强, 战再吉. 粉末烧结Fe-Cu多元合金的制备及性能研究 [D].秦皇岛: 燕山大学, 2015: 1) | [8] | Kovalchenko A M, Fushchich O.I, Danyluk S. The tribological properties and mechanism of wear of Cu-based sintered powder materials containing molybdenum disulfide and molybdenum diselenite under unlubricated sliding against copper [J].Wear, 2012, 106: 290 | [9] | Wei J D, Chen H, Liu X C. Effect of graphite on the microstructure and tribological properties of copper matrix friction material used in Wind turbine [J]. Lubrication and Engineering, 2013, 38(8): 62 | [9] | (魏敬丹, 陈华, 刘晓春. 石墨对风电组用铜基材料组织及摩擦磨损性能的影响 [J]. 润滑与密封, 2013, 38(8): 62) | [10] | Xiao Y L, Yao P P, Gong T M, et al. Effects of graphite and MoS2 ratio on performances of space docking friction material [J]. The Chinese Journal of Nonferrous Metals, 2012, 22(9): 2539 | [10] | (肖叶龙, 姚萍屏, 贡太敏等. 石墨与MoS2配比对空间对接用摩擦材料性能的影响 [J]. 中国有色金属学报, 2012, 22(9): 2539) | [11] | Yao P P, Xiong X, Huang B Y. Present situation and development of powder metallurgy airplane brake materials [J]. Powder Metallurgy Industry, 2000, 10(6): 36 | [11] | (姚萍屏, 熊 翔, 黄伯云. 粉末冶金航空刹车材料的应用现状与发展 [J]. 粉末冶金工业, 2000, 10(6): 36) | [12] | Li W X, Jiao B Q, Li J S, et al. Powder metallurgy brake pad development and test research of high speed train [J]. Railway Locomotive & Car, 2011, 31(5): 100 | [12] | (李万新, 焦标强, 李继山等. 高速动车组粉末冶金闸片研制及试验研究 [J]. 铁道机车车辆, 2011, 31(5): 100) | [13] | Bai T Q, Wang X F, Zhong Z G, et al. Effects of friction components on friction properties of powder metallurgy friction materials [J]. Materials Science and Engineering of Powder Metallurgy, 2006, 11(6): 345 | [13] | (白同庆, 王秀飞, 钟志刚等. 摩擦组元对粉末冶金摩擦材料摩擦性能的影响 [J]. 粉末冶金材料科学与工程, 2006, 11(6): 345) | [14] | Wang X F, Xu G S, Han J, et al. Effect of zirconium dioxide addition on friction and wear properties of Cu-based friction materials [J]. Powder Metallurgy Technology, 2013, 47(1): 22 | [14] | (王秀飞, 许桂生, 韩娟等.添加ZrO2对铜基摩擦材料摩擦磨损性能的影响 [J]. 粉末冶金技术, 2013, 47(1): 22) | [15] | Yin Y G, Zheng Z X, Ma S B, Liu Kun. Influence of temperature on friction and wear properties of Cu-matrix/graphite self-lubricating composite materials [J]. The Chinese Journal of Nonferrous Metals, 2004, 14(11), 1856 | [16] | Zhou H B, Yao P P, Xiao Y L, et al. Interface formation and wear mechanism between characteristic friction components and base components of Cu-based powder metuallurgy friction materials [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 328 | [16] | (周海滨, 姚萍屏, 肖叶龙等. 铜基粉末冶金摩擦材料特征摩擦组元与基体的界面形成及磨损机理 [J]. 中国有色金属学报, 2016, 26(2): 328) | [17] | Yao P P. High Performance Powder Metallurgy Brake Friction Materials [M]. Changsha: Central South University Press, 2015 | [17] | (姚萍屏. 高性能粉末冶金制动摩擦材料 [M]. 长沙: 中南大学出版社, 2015) | [18] | Wang G Z. Introduction to Materials Science and Engineering [M]. Beijing: Machinery Industry Press, 2006 | [18] | (王高潮. 材料科学与工程导论 [M]. 北京: 机械工业出版社, 2006) | [19] | Li W Q. Research on aluminium bronze matrix broke pads for high-speed tranins [J]. Material & Heat Treatment, 2008, 37 (16): 34 | [19] | (李万全. 高速列车铝青铜基制动闸片的研制 [J]. 材料热处理技术, 2008, 37(16): 34) | [20] | Liu J J. Principle of Material Wear and its Wear Resistance [M]. Beijing: Tsinghua University Press, 1993 | [20] | (刘家浚. 材料磨损原理及其耐磨性 [M]. 北京: 清华大学出版社, 1993) | [21] | Chen S B, Wang Y R. Metal Electron Microanalysis [M]. Beijing: Machinery Industry Press, 1982 | [21] | (陈世补, 王永瑞. 金属电子显微分析 [M]. 北京: 机械工业出版社, 1982) | [22] | Huang R F, Liu S Y. Study of development and manufacturing technology of sintered metal materials [J]. Ordnance Materials Science and Engineering, 1999, 22(1): 65 | [22] | (黄瑞芬, 刘淑英. 烧结金属摩擦材料及其工艺研究的发展 [J]. 兵器材料科学与工程, 1999, 22(1): 65) | [23] | Nash-Asuncion De·Baihe, Zhang Y.Hot pressing sintering-a new approach to understand sintering mechanism [J]. Chinese Journal of Inorganic Materials, 1998(4): 3 | [23] | (德·白鹤纳施—阿松朗, 张 颖. 热压烧结—理解烧结机理的新途径 [J]. 无机材料学报, 1998(4): 3) | [24] | Zhou B. Study on the process of preparing SiC reinforced Al matrix composites by microwave sintering [D] Kunming: Kunming University of Science and Technology, 2017, 1 | [24] | (周博. 微波烧结制备SiC增强Al基复合材料的工艺研究 [D]. 昆明: 昆明理工大学, 2017, 1) | [25] | Yuan G Z, Fan Y.Effects of SiO2 and B4C combination on properties of iron-copper based friction materials [J]. Powder Metallurgy Materials Science and Engineering, 1999, 4(3): 224 | [25] | (袁国洲, 樊 毅. SiO2和B4C组合对铁铜基摩擦材料性能的影响 [J]. 粉末冶金材料科学与工程, 1999, 4(3): 224) | [26] | Zhang M L, Zhu S G, Zhao M W. Effercts of sintering process on properties of WC/MgO nano-composite [J]. Hot Working Technology, 2010, 33(10): 106 | [26] | (张梅琳, 朱世根, 赵明威. 烧结工艺对纳米WC/MgO复合材料性能的影响 [J]. 热加工工艺, 2010, 39(10): 106) | [27] | Wang Y. Study on manganese zinc ferrite with wide temperature and low power consumption [D]. Hangzhou: Hangzhou University of Electronic Science and Technology, 2012, 1 | [27] | (王 勇. 宽温低功耗锰锌铁氧体的研究 [D]. 杭州: 杭州电子科技大学, 2012, 1) | [28] | Senouci A, Frene J, Zaidi H. Wear mechanism in graphite-copper electrical sliding contact [J]. Wear, 1999, 255(98): 949 | [29] | Sheng H C, Xiong X, Yao P P. E Effect of sintering temperature on abrasion behavior of Cu-based P/M aircraft brake materials [J]. Non-Metallic Mins, 2006, 29(1): 52 | [29] | (盛洪超, 熊翔, 姚萍屏. 烧结温度对铜基粉末冶金航空刹车材料摩擦磨损行为的影响 [J]. 非金属矿, 2006, 29(1): 52) | [30] | Qiu W Q, Dasary A, Mai Y W. Improvement in adhesion of diamond film on Cu substrate with an inlay structure interlayer [J]. Surface & Coatings Technology, 206 (2011): 224 | [31] | Qiu W Q, Liu Z W, He L X, Zeng D C, Mai Y W. Improved interfacial adhesion between diamond film and copper substrate using a Cu(Cr)-diamond composite interlayer [J]. Materials Letters, 2012, 81 | [32] | Fu C Q. Study on the structure and properties of iron-clad copper (Fe-20Cu) based friction materials [D]. Dalian: Dalian Maritime University, 2012, 1 | [32] | (付传起. 铜包铁(Fe-20Cu)基摩擦材料的组织及性能研究 [D]. 大连: 大连海事大学, 2012, 1) | [33] | Nekatibeb F, Annamalai A R, Upadhyaya A. Effect of Copper and Graphite Addition on Sinterability of Iron [J]. Transactional of the Indian Institute of Metals,2011, 64: 81 | [34] | Zhao Q, Dai J M, Wei C B, et al. Thick titanium interlayer remitting stress in diamond films deposited on copper substrate by hot filaments chemical vapor deposition [J]. Surface Technology, 2013, 42(5): 19 | [34] | (赵 齐, 代江明, 韦春贝等. 厚钛过渡层缓解铜基上热丝CVD金刚石薄膜内应力 [J]. 表面技术, 2013, 42(5): 19) | [35] | Zhao Q, Wei C B, Dai J M, al et. Diamond composite materials used in LED radiator [J]. Ordance Materials Science and Engineering, 2013, 36(6): 138 | [35] | (赵 齐, 韦春贝, 代江明等. 用于LED散热基片的金刚石复合材料的研究 [J]. 兵器材料科学与工程, 2013, 36(6): 138) | [36] | Wang H. Study on Fe-Cu composite prepared by powder metallurgy and its properties [D]. Qinhuangdao: Yanshan University, 2016, 1 | [36] | (王 昊. 粉末冶金制备Fe-Cu复合材料及其性能研究 [D]. 秦皇岛: 燕山大学, 2016, 1) | [37] | Mao K. Influence of sintering process on the properties of copper-based powder metallurgy friction materials [D]. Chengdu: Southwest Jiaotong University, 2011, 1 | [37] | (毛 凯. 烧结工艺对铜基粉末冶金摩擦材料性能的影响 [D]. 成都: 西南交通大学, 2011, 1) | [38] | Osterle W, D?rfel I, Prietzel C, et al. A comprehensive microscopic study of third body formation at the interface between a brake pad and brake disc during the final stage of a pin-disc test [J]. Wear, 2009, 267(5-8): 781 | [39] | Osterle W, Klo? H, Urban I, et al. Dmitriev Towards a better understanding of brake friction Materials [J]. Wear, 2007, 263(7): 1189 | [40] | Leal R M, Leit?o C, Loureiro A, et al. Material flow in heterogeneous friction stir welding of thin aluminum sheets: Effect of shoulder geometry [J]. Material Science and Engineering, 2008, 489(1-2): 384 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|