Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (10): 782-790    DOI: 10.11901/1005.3093.2017.545
ARTICLES Current Issue | Archive | Adv Search |
Effect of Conductive Substance Content in Polymer Electrolyte on Photovoltaic Performance of Quasi-solid-state Dye-sensitized Solar Cells
Danni ZHANG, Jie LIU, Feiyang MA, Guangben YANG, Xiaxia LIU, Henghui LI, Wangnan LI, Guijie LIANG()
Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
Cite this article: 

Danni ZHANG, Jie LIU, Feiyang MA, Guangben YANG, Xiaxia LIU, Henghui LI, Wangnan LI, Guijie LIANG. Effect of Conductive Substance Content in Polymer Electrolyte on Photovoltaic Performance of Quasi-solid-state Dye-sensitized Solar Cells. Chinese Journal of Materials Research, 2018, 32(10): 782-790.

Download:  HTML  PDF(1387KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Novel (PEO-PVP)/LiI/I2 gel electrolyte was prepared by blending polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO), and then the quasi-solid-state sensitized solar cell was prepared with the electrolyte. The effect of the amount of conductive substance on the conductivity of electrolyte, interfacial recombination kinetics between TiO2 and electrolyte, and the photoelectric performance of the DSSC was investigated. It follows that with the increase amount of the conductive substance, the recombination resistance and recombination reaction factor decrease gradually for the recombination between the light-generated electrons on TiO2 with the I3- in the electrolyte, thereby the recombination reaction is facilitated, correspondingly the open circuit voltage (VOC) of the dye-sensitized solar cells (DSSC) also reduced gradually. When the conductive substance is less than 15% (in mass fraction), the short-circuit current (Jsc) is controlled by the conductivity of the electrolyte, and the increase of the conductive substance may result in enhancement of the conductivity and the Jsc value. When the conductive substance is more than 15%, the dark current (j0) of the DSSC becomes the dominant factor affecting the Jsc value, and the increase of the conductive substance caused increase of j0 while decrease of the Jsc. The conversion efficiency (η) of the DSSC increases first and then decreases with the increase of the conductive substance and which reaches the optimum value of 5.6% when the amount of conductive substance is 15%.

Key words:  polymer materials      gel electrolyte      electrochemical impedance      conductive species contents      charge recombination kinetics     
Received:  13 September 2017     
ZTFLH:  O646  
Fund: Supported by National Natural Science Foundation of China (No. 51502085), Science and Technology Research Foudation of Xiangyang, and Hubei Superior and Distinctive Discipline Group (No. XKQ2018001)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.545     OR     https://www.cjmr.org/EN/Y2018/V32/I10/782

Fig.1  Absorption spectra of the gel electrolytes. Insert is the relationship between the absorption intensity at 230 nm and 293 nm and the conductive species contents
Fig.2  Cyclic voltammetry curves of the gel electrolytes
Fig.3  Steady-state linear scanning curves of the gel electrolytes
Fig.4  Plots of the ionic diffusion coefficients of the electrolytes versus the temperature
Fig.5  Nyquist impedance spectroscopy of the gel electrolytes
Fig.6  Relationship between ionic conductivity of gel electrolytes and temperature: σ versus T (a) and lnσ versus 1000/T (b)
Fig.7  The J-V curves of the DSSC under light (a) and dark (b) conditions at room temperature
Conductive species contents Ilim
/mA·cm-2
Dapp×10-4 /cm2·s-1 Rb
σ ×10-3
/S·cm-1
Voc/V Jsc/mA·cm-2 ff / % η / % Rs
at 0.7 V
RPt
at 0.7 V
Rct
at 0.7 V
2 % 1.81 2.58 427.7 1.40 0.745 7.5 58.1 3.8 29.4 200.8 462.5
5 % 4.53 2.49 214.9 2.79 0.727 8.3 55.3 4.0 29.2 51.3 167.0
10 % 5.19 1.35 79.6 7.53 0.705 10.5 62.4 5.3 27.6 2.2 127.4
15 % 5.32 0.93 60.8 9.86 0.685 11.1 61.7 5.6 27.3 1.9 93.2
20 % 5.43 0.57 32.6 18.40 0.619 10.7 63.3 5.0 25.0 1.1 55.9
Table 1  Parameters of ionic conductivity of gel electrolyte and the photovoltaic performance of the DSSC at room-temperature (30℃)
Fig.8  The relationship between the photoelectric parameters of the DSSC (a) Voc, (b) Jsc and (c) η and the conductive species contents in the electrolytes
Fig.9  Equivalent circuit diagrams for the DSSC under the potential of 0.4 V~0.6 V (a) and 0.7 V~0.8 V (b); Nyquist impedance spectroscopy of the DSSC based on the polymer gel electrolytes with different conductive species contents (c~h)
Fig.10  Relationship between the interfacial electron recombination resistance of TiO2/electrolyte and the potential: Rct versus V (a) and lnRct versus V (b)
[1] O'Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737
[2] Gr?tzel M.Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338
[3] Mathew S, Yella A, Gao P, et al.Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nat. Chem., 2014, 6(3): 242
[4] Kim J, Koh J K, Kim B, et al.Enhanced performance of I2-Free solid-state dye-sensitized solar cells with conductive polymer up to 6.8%[J]. Adv. Funct. Mater., 2015, 21(24): 4633
[5] Rong Y G, Mei A Y, Liu L F, et al.All-solid-state mesoscopic solar cells: from dye-sensitized to perovskite[J]. Acta Chim. Sinica, 2015, 73(3): 237(荣耀光, 梅安意, 刘林峰等. 全固态介观太阳能电池:从染料敏化到钙钛矿[J]. 化学学报, 2015, 73(3): 237)
[6] Kumara G R A, Kaneko S, Okuya M, et al. Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor[J]. Langmuir, 2002, 18(26): 10493
[7] Perera V P S, Senevirathna M K I, Pitigala P K D D P, et al. Doping CuSCN films for enhancement of conductivity: Application in dye-sensitized solid-state solar cells[J]. Sol. Energ. Mat. Sol. C., 2005, 86(3): 443
[8] Ding I K, Tétreault N, Brillet J, et al.Pore-filling of spiro-OMeTAD in solid-state dye sensitized solar cells: quantification, mechanism, and consequences for device performance[J]. Adv. Funct. Mater., 2009, 19(15): 2431
[9] Jiang K J, Manseki K, Yu Y H, et al.Photovoltaics based on hybridization of effective dye-sensitized titanium oxide and hole-conductive polymer P3HT[J]. Adv. Funct. Mater., 2009, 19(15): 2481
[10] Murakoshi K, Kogure R, Wada Y, et al.Fabrication of solid-state dye-sensitized TiO2, solar cells combined with polypyrrole[J]. Sol. Energ. Mat. Sol. C., 1998, 55(1-2): 113
[11] Duan Y, Tang Q, Chen Y, et al.Solid-state dye-sensitized solar cells from poly(ethylene oxide)/polyaniline electrolytes with catalytic and hole-transporting characteristics[J]. J. Mater. Chem. A, 2015, 3(10): 5368
[12] Li X P, Fang S B, Kang J J, et al.Quasi solid state dye-sensitized solar cells with polymer electrolytes based on polysiloxanes[J]. Acta Energi. Sin., 2007, 28(8): 929(李学萍, 方世璧, 康俊杰等. 聚硅氧烷为基体的聚合物电解质准固态染料敏化太阳电池[J]. 太阳能学报, 2007, 28(8): 929)
[13] Kang J, Li W, Wang X, et al.Polymer electrolytes from PEO and novel quaternary ammonium iodides for dye-sensitized solar cells[J]. Electrochim. Acta, 2003, 48(17): 2487
[14] Li M, Feng S, Fang S, et al.The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells[J]. Electrochim. Acta, 2007, 52(14): 4858
[15] Zhang Y H, Zhu J, Dai S Y.Recent research development on solid state and quasi-solid state electrolyte for dye-sensitized Solar Cells[J]. Chem., 2010, 73(12): 1059(张耀红, 朱俊, 戴松元. 染料敏化太阳能电池用固态及准固态电解质的研究进展[J]. 化学通报, 2010, 73(12): 1059)
[16] Zhang Y X, Huo Z P, Zhang C N, et al.Research on the dye-sensitized solar cells based on P(VDF-HFP)-type polymer gel electrolyte[J]. Acta chim. Sinica, 2009, 67(19): 2253(张玉香, 霍志鹏, 张昌能等. 基于偏氟乙烯-六氟丙烯共聚物凝胶电解质的染料敏化太阳电池光电性能研究[J]. 化学学报, 2009, 67(19): 2253)
[17] Fenton D E, Parker J M, Wright P V.Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589
[18] Ren Y, Zhang Z, Fang S, et al.Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells[J]. Sol. Energ. Mat. Sol. C., 2002, 71(2): 253
[19] Wang M, Xiao X, Zhou X, et al.Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells[J]. Key Eng. Mater., 2007, 91(9): 785
[20] Jin H R, Jin J, Xu J, et al.Preparation of iodine-free ionic liquid gel electrolyte using polyethylene oxide (PEO)-polyethylene glycol (PEG) and its application in Ti-foil-based dye-sensitized solar cells[J]. Electrochim. Acta, 2016, 201: 251
[21] Takikawa K, Nakano M, Arita T.Change in Apparent Permeability of Iodine in the Presence of Polyvinylpyrrolidone[J]. Chem. Pharm. Bull., 2008, 26(3): 874
[22] Xu N, Ding D.Preparation and antibacterial activity of chitosan derivative membrane complexation with iodine[J]. Rsc Adv., 2015, 5(97): 79820
[23] Xu J, Zhao P, Zhang Y.Iodine-responsive poly (HEMA-PVP) hydrogel for self-regulating burst-free extended release[J]. J. Biomat. Sci-Polym. E., 2017, 28(5): 470
[24] Liu Y, Hagfeldt A, Xiao X R, et al.Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell[J]. Sol. Energ. Mater. Sol. C., 1998, 55(3): 267
[25] Li R, Liu D X, Zhou D F, et al.Influence of the electrolyte cation in organic dye-sensitized solar cells: lithium versus dimethylimidazolium[J]. Energ. Environ. Sci., 2010, 3(11): 1765
[26] Jung N E, Lee D K, Kim Y R, et al.Effect of iodine concentration in the quasi-solid state electrolyte on the photovoltaic performance of dye-sensitized solar Cells[J]. Mol. Cryst. Liq. Cryst., 2015, 620(1): 123
[27] Mathew A, Anand V, Rao G M, et al.Effect of iodine concentration on the photovoltaic properties of dye sensitized solar cells for various I2/LiI ratios[J]. Electrochim. Acta, 2013, 87(1): 92
[28] Fukui A, Komiya R, Yamanaka R, et al.Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell[J]. Sol. Energ. Mater. Sol. C., 2006, 90(5): 649
[29] Boschloo G, Leif H?ggman A, Hagfeldt A.Quantification of the Effect of 4-tert-Butylpyridine Addition to I-/I3- Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells[J]. J. Phys. Chem. B, 2006, 110(26): 13144
[30] Kang M S, Kim J H, Won J, et al.Dye-sensitized solar cells based on crosslinked poly(ethylene glycol) electrolytes[J]. J. Photochem. Photobio. A, 2006, 183(1): 15
[31] Sakaguchi S, Ueki H, Kato T, et al.Quasi-solid dye sensitized solar cells solidified with chemically cross-linked gelators[J]. J. Photochem. Photobio. A, 2004, 164(1-3): 117
[32] Nazeeruddin M K, Kay A, Rodicio I, et al.Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN- and SCN-) on nanocrystalline titanium dioxide electrodes[J]. J. Am. Chem. Soc., 1993, 115(14): 6382
[33] Huang S Y, Schlichth?rl G, Nozik A J, et al.Charge recombination in dye-sSensitized nanocrystalline TiO2 solar cells[J]. J. Phys. Chem. B, 1997, 101(14): 2576
[34] Wang Q, Ito S, Gr?tzel M, et al.Characteristics of high efficiency dye-sensitized solar cells[J]. J. Phys. Chem. B, 2006, 110(50): 25210
[35] Xu X Q, Xu G.Electrochemical impedance spectra of CdSe quantume dots sensitized nanocrystalline TiO2 solar cells[J]. Sci. China. Chem., 2011, 41(1): 37(徐雪青, 徐刚. CdSe量子点敏化纳米二氧化钛太阳电池的电化学交流阻抗谱[J]. 中国科学: 化学, 2011, 41(1): 37)
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. 材料研究学报, 2022, 36(8): 628-634.
[5] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[15] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
No Suggested Reading articles found!