Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (5): 348-356    DOI: 10.11901/1005.3093.2017.285
ARTICLES Current Issue | Archive | Adv Search |
Compression Performance after Being Subjected to Impact of Ultra-thin Composite Laminates for Helmet
Huan MA1, Guoli ZHANG1(), Youxin ZHU2, Weiwei WANG1, Zhipeng WANG1
1 Key Laboratory of Advanced Textile Composites, Tianjin and Ministry of Education, College of Textiles, Tianjin Polytechnic University, Tianjin 300387, China
2 Weihai Guangwei Composites Material Co., Ltd, Weihai 264200, China
Cite this article: 

Huan MA, Guoli ZHANG, Youxin ZHU, Weiwei WANG, Zhipeng WANG. Compression Performance after Being Subjected to Impact of Ultra-thin Composite Laminates for Helmet. Chinese Journal of Materials Research, 2018, 32(5): 348-356.

Download:  HTML  PDF(2665KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ultra-thin composite laminates of 1.30 mm for making helmet were fabricated by 5-harness satin weave cabon fiber fabric, plain weave carbon fiber prepreg and kevlar multilayered biaxial weft knitted (MBWK) fabric with different areal weight. The stacking sequence were [0°/0°/0°]T and [45°/0°/45°]T. The composite laminates were subjected to given drop hammer impacts and then the mechanical property of compression after impact (CAI) was measured and analyzed. The impact damage was assessed subsequently by coupled ultrasound scanner and the damage area was calculated by image analysis software of Image Pro Plus, and the influence of reinforcement, stacking sequence on CAI were investigated. It is observed that reinforcement with [45°/0°/45°]T could restrain the propagation of crack along the fiber direction, nevertheless, the impact point of laminates was seriously damaged. And the dent depth was smaller with the increasing areal weight of MBWK fabric. Compared with other structures, the ultra-thin composite laminate, prepared with stacking sequence of [0°/0°/0°]T, bottom layer of carbon fiber prepreg, the middle layer of MBWK fabric and the top layer of 5-harness satin carbon fabric, presented the smallest damage area and dent depth i.e. 225.28 mm2 and 0.16 mm respectively, correspondingly the residual compressive strength reaches the maximum of 97.43 MPa and the compressive strength retention rate was 75.72%. It follows that this reinforcement structure exhibits excellent compresion performance after being subjected to drop hammer impact effect.

Key words:  composite      ultra-thin helmet shell      hybrid of reinforcement      stacking sequence      compression after impact     
Received:  26 April 2017     
Fund: Supported by the Planned Science and Technology Project of Tianjin (No. 16YFZCGX00190)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.285     OR     https://www.cjmr.org/EN/Y2018/V32/I5/348

Parameters Prepreg MBWK Satin of fabric
Specifications 3011-plain - - - 5-harness satin
Areal weight/g·m-2 240 630 570 330 275
Thickness/mm 0.175 0.85 0.75 0.50 0.40
Warp density/ends·10 cm-1 90 47 47 47 70
Weft density/ends·10 cm-1 90 47 47 45 70
Resin weight content/% 40 - - - -
Table 1  Parameters of materials for composite laminates
Specimens Materials Stacking sequence Thickness/mm
P0630MS0 Prepreg-630 g·m-2 MBWK- Stain of fabric [0°/0°/0°]T 1.30
P45630MS45 [45°/0°/45°]T 1.30
P0570MS0 Prepreg-570 g·m-2 MBWK- Stain of fabric [0°/0°/0°]T 1.30
P45570MS45 [45°/0°/45°]T 1.30
S0630MS0 Stain of fabric-630 g·m-2 MBWK- Stain of fabric [0°/0°/0°]T 1.30
S45630MS45 [45°/0°/45°]T 1.30
S0330MS0 Stain of fabric-330 g·m-2 MBWK- Stain of fabric [0°/0°/0°]T 1.30
S45330MS45 [45°/0°/45°]T 1.30
Table 2  Design of structural for composite laminates
Fig.1  Fixture diagram for impact (a) and compression after impact (b)
Fig.2  Impact force-deflection curves (a, b) and impact force-time curves (c, d) of two lamination sequence. (a, c) [0°/0°/0°]T stacking sequence, (b, d) [45°/0°/45°]T stacking sequence
Fig.3  Pictures of damage progression of composite laminates
Fig.4  A typical force -time curve and the corresponding energy - time curve for laminate P45570MS45
Fig.5  Damage length (a), damage width (b), damage area (c) and dent depth (d) of impact for composites laminates
Energy parameters Peak energy, Ei/J-1 Maximum energy, Emax/J-1 Residual energy, Er/J-1
Reinforcement [0°/0°/0°]T [45°/0°/45°]T [0°/0°/0°]T [45°/0°/45°]T [0°/0°/0°]T [45°/0°/45°]T
P630MS 4.04 3.69 4.41 4.36 0.37 0.67
P570MS 4.40 3.52 4.51 4.73 0.11 1.21
S630MS 4.24 3.47 4.60 4.37 0.36 0.89
S330MS 4.11 3.29 4.33 4.52 0.23 1.23
Table 3  Relationship of peak energy、maximum energy and residual energy for all laminates
Fig.6  C-Scan images of damage progression of back for laminates
Fig.7  Force-deflection curves of CAI for (a) [0°/0°/0°]T and (b) [45°/0°/45°]T composite laminates
[0°/0°/0°]T Residual compressive strength /MPa Compressive strength/MPa [45°/0°/45°]T Residual compressive
strength/MPa
Compressive strength/MPa
P630MS 97.43 128.67 P630MS 85.49 115.63
P570MS 77.67 110.47 P570MS 84.50 104.76
S630MS 81.87 121.35 S630MS 95.50 113.28
S330MS 68.59 101.83 S330MS 81.17 90.32
Table 4  Results of compressive strength and residual compressive strength for composite laminates
[1] Swolfs Y, Gorbatikh L, Verpoest I.Fibre hybridisation in polymer composites: a review[J]. Compos. Part A Appl. Sci. Manuf., 2014, 67: 181
[2] Wo X Y, Tu B, Xia Y W.The properties and application of aramid fibers and the composite materials[J]. Spacecr. Recovery. Remote Sens., 2005, 26(2): 50(沃西源, 涂彬, 夏英伟. 芳纶纤维及其复合材料性能与应用研究[J]. 航天返回与遥感, 2005, 26(2): 50)
[3] Han C F, Sun Y, Xu Y R, et al.Research progress of reinforced fabrics used for composite helmet shells[J]. J. Text. Res., 2014, 35(8): 116(韩朝锋, 孙颖, 徐艺榕等. 头盔壳体用复合材料增强织物研究进展[J]. 纺织学报, 2014, 35(8): 116)
[4] Lopes C S, Seresta O, Coquet Y, et al.Low-velocity impact damage on dispersed stacking sequence laminates. Part I: experiments[J]. Compos. Sci. Technol., 2009, 69: 926
[5] Tham C Y, Tan V B C, Lee H P. Ballistic impact of a KEVLAR helmet: experiment and simulations[J]. Int. J. Impact Eng., 2008, 35: 304
[6] Kadlec M, Kafka V.Strain concentration during the compression of a carbon/epoxy composite after impact[J]. Int. J. Struct. Integrity, 2015, 6: 279
[7] Kulkarni S G, Gao X L, Horner S E, et al.Ballistic helmets-their design, materials, and performance against traumatic brain injury[J]. Compos. Struct., 2013, 101: 313
[8] Campbell D T, Cramer D R.Hybrid thermoplastic composite ballistic helmet fabrication study [A]. The 3rd Society for the Advancement of Material and Process Engineering[C]. Shanghai, 2008
[9] Gustin J, Joneson A, Mahinfalah M, et al.Low velocity impact of combination kevlar/carbon fiber sandwich composites[J]. Compos. Struct., 2005, 69: 396
[10] Bejan L, Taranu N, S?rbu A.Effect of hybridization on stiffness properties of woven textile composites[J]. Appl. Compos. Mater., 2013, 20: 185
[11] Wan Y Z, Lian J J, Huang Y, et al.Preparation and characterization of three-dimensional braided carbon/Kevlar/epoxy hybrid composites[J]. J. Mater. Sci., 2007, 42: 1343
[12] Grujicic M, Pandurangan B, Koudela K L, et al.A computational analysis of the ballistic performance of light-weight hybrid composite armors[J]. Appl. Surf. Sci., 2006, 253: 730
[13] Huang Y, Liu X H, Li Y Z.Study of impact damage characteristics of G/K commgled-wove-fabric reinforced composite plate[J]. Aerosp. Mater. Technol., 2002, 32(6): 26(黄英, 刘晓辉, 李郁忠. G/K织物混杂增强复合材料层合板冲击损伤特性研究[J]. 宇航材料工艺, 2002, 32(6): 26)
[14] Fuernschuss B, Kandare E, Sabo A, et al.Rethinking the safety of jockey helmets: A statistical comparison of different composite laminate helmet shells[J]. Procedia Eng., 2016, 147: 507
[15] Wang Y J, Wu X Q, Chen L.Design and fabrication of hybrid fiber composite of helmet[J]. J. Wuhan Univ. Technol., 2009, 31(4): 1(王燕杰, 吴晓青, 陈利. 混杂纤维复合材料头盔的设计与制备[J]. 武汉理工大学学报, 2009, 31(4): 1)
[16] Hitchen S A, Kemp R M J. The effect of stacking sequence on impact damage in a carbon fibre/epoxy composite[J]. Composites, 1995, 26(3): 207
[17] Hu J Y.Research on low-velocity impact properties and damage mechanism of woven fabric composite [D]. Harbin: Harbin Institute of Technology, 2010(胡靖元. 织物复合材料低速冲击特性与损伤机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010)
[18] Wang L P, Yan Y, Zeng D.Finite element analysis of low-velocity impact damage of mixed woven composites[J]. Acta Aeronaut. Astronaut. Sin., 2007, 28(S1): 121(王立朋, 燕瑛, 曾东. 混合机织复合材料低速冲击损伤有限元分析[J]. 航空学报, 2007, 28(S1): 121)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!