Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (2): 119-126    DOI: 10.11901/1005.3093.2017.318
ARTICLES Current Issue | Archive | Adv Search |
Self-assembly of Graphene Hollow Microspheres with Wideband and Controllable Microwave Absorption Properties
Qiang ZENG1, Ping CHEN1(), Qi YU2, Dongwei XU1
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education & School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2 Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang 110136, China
Cite this article: 

Qiang ZENG, Ping CHEN, Qi YU, Dongwei XU. Self-assembly of Graphene Hollow Microspheres with Wideband and Controllable Microwave Absorption Properties. Chinese Journal of Materials Research, 2018, 32(2): 119-126.

Download:  HTML  PDF(2738KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe3O4 nanoparticles coated hollow microspheres of reduced graphene oxide (Air@rGO€Fe3O4) were synthesized via a simple and efficient two-step method consisting of water-in-oil (W/O) emulsion technique and subsequent annealing process. The Air@rGO€Fe3O4 hollow microspheres showed good electromagnetic properties because of the coexistence of magnetic loss and dielectric loss to microwave. The microwave absorbing bandwidth (reflection loss<-10 dB) for Air@rGO€Fe3O4 of thickness in 2.8 mm (with 33.3 mass% paraffin) locates in the range of 7.5~14.7 GHz, while a minimum reflection loss -52 dB at 10.0 GHz. More interestingly, the microwave absorbing properties of the hollow microspheres can be easily controlled by tuning the ratio of the two components in the composites and the thickness of samples, and as the Fe3O4 content increase, the minimum reflection loss valve of Air@rGO €Fe3O4 microspheres move to higher frequency range. These Air@rGO€Fe3O4 hollow microspheres are great potential candidate as microwave absorbents due to their excellent properties such as wide absorbing frequency, strong absorption, low density and controllable absorbing properties.

Key words:  composite      wideband and controllable microwave absorption properties      self-assembly      Air@rGO€Fe3O4 hollow microsphere      impedance matching     
Received:  16 May 2017     
ZTFLH:  TB332  
Fund: Supported by National Defense Key Program Fundamental Research Program (No. A35201XXXXX);National Natural Science Foundation of China (No. 51303106);Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education (No. LABKF1502)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.318     OR     https://www.cjmr.org/EN/Y2018/V32/I2/119

Fig.1  Schematic illustration of the assembly process of Air@rGO€Fe3O4 hollow microspheres
Fig.2  Photo of vector network analyzer and coaxial test sample
Fig.3  TGA thermograms of PVA under nitrogen
Fig.4  XRD patterns of GO, Sp and S1.0
Fig.5  XPS wide scan spectra (a), C1s spectrum (b), Fe2p spectrum (d) of S1.0 and XPS C1s spectrum of graphene oxide (c)
Concentration of functional groups / %
-C-C- -C-O- -C=O -O-C=O
S1.0 86.43 13.57 0 0
Graphene oxide 46.73 38.78 12.15 2.34
Table 1  Content of the various functional groups of S1.0 and graphene oxide
Fig.6  SEM images of PVA/AAI/GO precursor (a), S1.0 (Air@rGO€Fe3O4 microspheres) (b), cross-section of S1.0 microsphere (c), TEM image of a fragment from a microsphere which has been ultrasonically decomposed (d), high magnification TEM image of the fragment (e)
Fig.7  Reflection loss of S0.5 (a), S1.0 (b), S1.5 (c) and Sp (d) at difference thickness
Samples in matrices % Min|RL|
/dB
Thickness/mm
(RL≤-10 dB)
Frequency range/GHz
(RL≤-10 dB)
Refs
Air@rGO€Fe3O4 microsphere in wax 33 -52.0 2.8 7.2 This work
Silica-nickel-carbon microspheres in wax 40 -37.6 2.4 6.0 [1]
cobalt/polypyrrole in wax 30 -33.0 2.0 4.8 [2]
graphene@Fe3O4@SiO2@PANI in wax 25 -40.7 2.5 5.8 [3]
Co/carbon nanotube-
graphene in wax
30 -65.6 2.2 10.0-13.5 [4]
NiCoP/RGO in wax 75 -17.8 1.5 6.2-9.3 [5]
CoxFe3-xO4(x=0-1) spheres in wax 75 -41.1 2.0 4.2 [6]
Fe3O4/graphene capsules in wax 30 -32.0 3.5 4.2 [7]
RGO-PPy-Co3O4 in wax 50 -43.5 3.2 6.4 [8]
Fe3O4@SiO2@RGO in wax 20 -26.6 3.0 3.6 [9]
graphene@Fe3O4@carbon@MnO2 in wax 25 -38.8 1.8 5.4 [14]
RGO-CoFe2O4/GNSs in cyanate ester resin 13 -21.8 1.2 2.8 [17]
graphene@Fe3O4@C@PANI in wax 25 -44.2 3.0 5.8 [18]
Co-doped MnO2 in wax 20 -17.5 2.0 5.2 [19]
hierarchical NiCo2O4 in wax 50 -25.5 4.0 1.8 [20]
α-Co/graphene in wax 60 -47.5 2.0 3.9 [21]
ring-shaped FeCo@
carbon fiber in wax
20 -37.7 1.8 1.9 [22]
cobalt-cobalt oxide in wax 60 -30.5 1.7 4.7 [23]
rugby-shaped CoFe2O4 in wax 50 -34.1 2.5 2.6 [24]
Fe3O4@ZnO in wax 50 -22.7 3.5 5.9 [25]
hollow porous Ni/SnO2 in wax 50 -36.7 1.7 3.4 [26]
hollow urchinlike α-MnO2 in wax 50 -41.0 1.9 2.5 [27]
RGO/CoFe2O4 in wax 50 -42.2 2.3 5.2 [28]
Ag@Fe3O4/RGO in wax 50 -40.1 2.0 3.1 [29]
graphene@Fe3O4@carbon in wax 25 -30.1 1.8 3.4 [30]
Ni0.5Zn0.5Fe2O4 ferrite nanofiber in wax 15 -14.1 3.6 4.4 [31]
Table 2  microwave absorption performance of best microwave absorption materials reported in literatures
Samples RLmin/dB Frequency range/GHz
(RL≤-10 dB)
The bandwidth/GHz
(RL≤-10 dB)
S0.5 -28.5 5.8~9.3 3.5
S1.0 -52 7.5~14.7 7.2
S1.5 -25.9 8.8~14.3 5.5
Sp -11.7 7.9~9.2 1.3
Table 3  Microwave absorption performance of the Air@rGO€Fe3O4 microspheres with different Fe3O4 loadings at a thickness of 2.8 mm
[1] An Z, Zhang J.Facile large scale preparation and electromagnetic properties of silica-nickel-carbon composite shelly hollow microspheres[J]. Dalton Trans., 2016, 45(7): 2881
[2] Wang H, Ma N, Yan Z, et al.Cobalt/polypyrrole nanocomposites with controllable electromagnetic properties[J]. Nanoscale, 2015, 7(16): 7189
[3] Wang L, Zhu J, Yang H, et al.Fabrication of hierarchical graphene@Fe3O4@SiO2@polyaniline quaternary composite and its improved electrochemical performance[J]. J. Alloys Compd., 2015, 634: 232
[4] Qi X, Hu Q, Xu J, et al.The synthesis and excellent electromagnetic radiation absorption properties of core/shell-structured Co/carbon nanotube-graphene nanocomposites[J]. Rsc Adv., 2016, 6(14): 11382
[5] Ye W, Fu. J, Wang Q, et al. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets[J]. J. Magn. Magn. Mater., 2015, 395: 147
[6] Ji R, Cao C, Chen Z, et al.Solvothermal synthesis of CoxFe3-xO4 spheres and their microwave absorption properties[J]. J. Mater. Chem. C., 2014, 2(29): 5944
[7] Jian X, Wu B, We Y, et al.Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties[J]. Acs Appl. Mater. Inter., 2016, 8(9): 6101
[8] Liu P, Huang Y.Synthesis of reduced graphene oxide-conducting polymers-Co3O4 composites and their excellent microwave absorption properties[J]. Rsc Adv., 2013, 3(41): 19033
[9] Pan Y F, Wang G S, Yue Y H.Fabrication of Fe3O4@SiO2@RGO nanocomposites and their excellent absorption properties with low filler content[J]. Rsc Adv., 2015, 5(88): 71718
[10] Cao M S, Song W L, Hou Z L, et al.The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon., 2010, 48(3): 788
[11] Wen B, Cao M S, Liu M M, et al.Reduced Graphene Oxides: Light-Weight and high-efficiency electromagnetic interference shielding at elevated temperatures[J]. Adv. Mater., 2014; 26: 3484
[12] Cao W Q, Wang X X, Yuan J, et al.Temperature dependent microwave absorption of ultrathin graphene composites[J]. J. Mater. Chem. C, 2015, 3(38): 10017
[13] Wang L, Huang Y, Li C, et al.Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance[J]. Phys. Chem. Chem. Phys., 2015, 17(8): 5878
[14] Chen P, Zeng Q, Yu Q, et al. Method for preparing graphene hollow microsphere loaded with magnetic nano particle [P]. China patent, ZL 201510925343.3, 2017(陈平, 曾强, 于祺等. 一种负载磁性纳米粒子的石墨烯空心微球的制备方法[P]. 中国发明专利, ZL 201510925343.3, 2017)
[15] He H, Gao C. Supraparamagnetic, Conductive, Processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles[J]. Acs Appl. Mater. Inter., 2010, 2(11): 3201
[16] Zeng. Q, Xiong. X. H, Chen. P, et al Air@rGO€Fe3O4 microspheres with spongy shells: self-assembly and microwave absorption performance[J]. Journal of Materials Chemistry C. 2016;4(44): 10518
[17] Fang R, Guang Z, Peng R, et al.Cyanate ester resin filled with graphene nanosheets and CoFe2O4-reduced graphene oxide nanohybrids as a microwave absorber[J]. Appl. Surf. Sci., 2015, 351: 40
[18] Wang L, Huang Y, Li C, et al.Hierarchical composites of polyani-line nanorod arrays covalently-grafted on the surfaces of graphene@Fe3O4@C with high microwave absorption performance[J]. Compos. Sci. Technol., 2015, 108: 1
[19] Duan Y, Liu Z, Jing H, et al.Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties[J]. J. Mater. Chem., 2012, 22(35): 18291
[20] Min Z, Fei L, Li T Y, et al.Loss mechanism and microwave absorption properties of hierarchical NiCo2O4 nanomaterial[J]. J. Phys. D: Appl. Phys., 2015, 48(21): 215305
[21] Pan G, Zhu J, Ma S, et al.Enhancing the electromagnetic performance of co through the phase-controlled synthesis of hexagonal and cubic co nanocrystals grown on graphene[J]. Acs Appl. Mater. Inter., 2013, 5(23): 12716
[22] Wan Y, Xiao J, Li C, et al.Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies[J]. J. Magn. Magn. Mater., 2016, 399: 252
[23] Wang Z, Bi H, Wang P, et al.Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals[J]. Phys. Chem. Chem. Phys., 2015, 17(5): 3796
[24] Zhang S, Jiao Q, Zhao Y, et al.Preparation of rugby-shaped CoFe2O4 particles and their microwave absorbing properties[J]. J. Mater. Chem. A, 2014, 2(42): 18033
[25] Wang Z, Wu L, Zhou J, et al.Enhanced microwave absorption of Fe3O4 nanocrystals after heterogeneously growing with ZnO nanoshell[J]. Rsc Adv., 2013, 3(10): 3309
[26] Zhao B, Zhao W, Shao G, et al.Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids[J]. Dalton Trans., 2015, 44(36): 15984
[27] Zhou M, Zhang X, We J, et al.Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures[J]. J. Phys. Chem. C, 2011, 115(5): 1398
[28] Zong M, Huang Y, Zhang N, et al.Influence of (RGO)/(ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composites[J]. J. Alloys Compd., 2015, 644: 491
[29] Liu G, Jiang W, Wang Y, et al.One-pot synthesis of Ag@Fe3O4/reduced graphene oxide composite with excellent electromagnetic absorption properties[J]. Ceram. Int. Part B, 2015, 41(3): 4982
[30] Huang Y, Wang L, Sun X.Sandwich-structured graphene@Fe3O4@carbon nanocomposites with enhanced electromagnetic absorption properties[J]. Mater. Lett., 2015, 144: 26
[31] Huang X, Zhang J, Lai M, et al.Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers[J]. J. Alloys Compd., 2015, 627: 367
[32] Kong L, Yin X, Ye F, et al.Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl2O4 nanograins[J]. J. Phys. Chem. C, 2013, 117(5): 2135
[33] Cao W Q, Wang X X, Cao W Q, et al.Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding[J]. J. Mater. Chem. C, 2015, 3(26): 6589
[34] He J Z, Wang X X, Zhang L Y, et al.Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity[J]. J. Mater. Chem. C, 2016, 4(29): 7130
[35] Cao M S, Yang J, Song W L, et al.Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Appl.Mater. Inter., 2012, 4(12): 6949
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!