Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (11): 867-873    DOI: 10.11901/1005.3093.2016.645
Orginal Article Current Issue | Archive | Adv Search |
Effect of Sepiolite on Thermo-oxidative Stability Performance of Reinforced EPDM
Zhigang ZHAO1, Qingguo TANG1,2(), Zhaogang ZENG3, Shuang YANG1, Jianfeng SUN1,2, Jinsheng LIANG1,2
1 Key Laboratory of Special Functional Materials for Ecological Environment and Information Ministry of Education, Hebei University of Technology, Tianjin 300130, China.
2 Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China.
3 Xiangtan Sepiolite Technology Company Limited, Xiangtan 411100, China.
Cite this article: 

Zhigang ZHAO, Qingguo TANG, Zhaogang ZENG, Shuang YANG, Jianfeng SUN, Jinsheng LIANG. Effect of Sepiolite on Thermo-oxidative Stability Performance of Reinforced EPDM. Chinese Journal of Materials Research, 2017, 31(11): 867-873.

Download:  HTML  PDF(832KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of the addition of modified sepiolite on the thermal oxidative stability of the surface modified sepiolite reinforced ethylene propylene diene monomer rubber (OSP/EPDM) was investigated via the orthogonal experiment L9(34). The peak temperature variation for the oxidation process of OSP/EPDM is determined by thermogravimetric and differential thermal analysis (TG-DTA). The apparent activation energy (ΔE) and reaction rate constant (KT) were acquired via oxidation reaction test of the vulcanized rubber and oxidation reaction kinetics calculation, while the oxidation induction time (OIT) was calculated according to Doyle formula, which was compared with the experimental resultsof rubber aging test. The results show that the oxidation induction time (t70) are in good agreement with the reaction rate constant K70, and the calculated results are consistent to the experimental ones, indicating that the t70 could be applied to evaluate thermal oxidative stability of OSP/EPDM.

Key words:  composite      sepiolite      ethylene propylene diene monomer      thermo-oxidative stability performance      oxidation induction time      aging experiment     
Received:  03 November 2016     
Fund: Supported by Natural Science Foundation of Hebei Province (No. E2013202142) and Natural Science Foundation of Tianjin City (No. 10JCZDJC223300)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.645     OR     https://www.cjmr.org/EN/Y2017/V31/I11/867

No. RD/phr KH570/phr OSP/phr CB/phr S/phr
1 1.7 2 60 0 2.2
2 1.7 3 80 0 2.5
3 1.7 4 100 0 2.8
4 2 2 80 0 2.8
5 2 3 100 0 2.2
6 2 4 60 0 2.5
7 2.3 2 100 0 2.5
8 2.3 3 60 0 2.8
9 2.3 4 80 0 2.2
CB 1.7 3 0 80 2.5
Table 1  Orthogonal experiment of OSP/EPDM composite rubber
Fig.1  The TG-DTA curve of sample 2 under air and nitrogen atmosphere
Fig.2  DTA curve of samples 5 in table 1 under air atmosphere with different heating rate
No. Heating rate / ℃·min-1
5 10 15
1 261.87 275.51 279.89
2 257.87 271.30 283.30
3 257.20 272.69 278.30
4 260.59 276.93 282.89
5 256.77 270.55 280.12
6 264.53 278.24 290.22
7 257.86 274.11 283.91
8 265.06 279.52 289.02
9 265.06 274.21 284.95
CB 254.55 280.41 300.99
Table 2  Oxidation peak temperature of the samples under different heating rate
No. E / kJ·mol-1 A / min-1 K70 / min-1 t70 / a R2
1 25.66 1.44×103 5.9×10-6 1.55 0.9531
2 49.81 1.52×106 8.95×10-10 5.55 0.9837
3 26.89 6.82×104 9.6×10-6 0.63 0.9664
4 26.15 3.14×104 2.23×10-5 0.36 0.9668
5 52.38 1.38×105 9.23×10-7 4.4 0.9990
6 24.33 1.73×104 1.21×10-4 0.17 0.9858
7 27.98 7.32×104 9.75×10-7 3.9 0.9994
8 27.73 8.17×104 1.66×10-6 2.32 0.9997
9 25.10 2.64×104 4.95×10-5 0.21 0.9971
CB 28.91 1.02×103 9.81×10-3 0.08 0.9948
Table 3  Influence of experimental conditions on various coefficients
No. Before aging After aging / (70℃×24 h)
Tensile strength
/MPa
Elongation at break/% Hardness
/HA
Tensile strength
/MPa
Elongation at break/% Hardness
/HA
AC
1 6.77 277.79 67 7.67 274.82 68.5 1.1208
2 9.17 309.39 69 10 288.7 71.2 1.0176
3 11.03 269.95 73 11.61 221.6 76 0.864
4 8.17 305.98 68.5 9.36 309.23 71 1.1578
5 9.32 280.02 71.5 10.28 261.43 76 1.0298
6 7.27 273.95 66 8.76 292.2 70 1.2852
7 8.77 315.31 70 10.2 286.53 73.2 1.0984
8 7.42 320.66 64 7.92 268.87 70 0.8950
9 8.13 275.14 69 9.61 273.92 72.8 1.1768
CB 15.96 152.47 76 14.33 130.97 78 0.7713
Table 4  Comparison with the mechanical properties of OSP/EPDM composite rubber before and after aging
Range RD KH570 OSP S
AC 0.157 0.139 0.142 0.128
t70 2.104 1.630 3.753 0.934
Table 5  Range analysis of AC and t70 for OSP/EPDM
[1] N. Y. Ning, Q. Ma, Y. Q. Zhang, et al.Enhanced thermo-oxidative aging resistance of EPDM at high temperature by using synergistic antioxidants[J]. Polymer Degradation and Stability, 2014, 102(1): 1
[2] M. Rodriguez, J. Gonzalez, M. Munoz.Acid activation of a spanish sepiolite: physicochemical characterization, free silica content and surface area of products obtained[J]. Clay Miner, 1994, 29(3): 361
[3] E. Ruiz-Hitzky.Molecular access to intracrystalline tunnels of sepiolite[J]. Journal of Materials Chemistry, 2001, (11): 86
[4] G. Rytwo.Adsorption of monovalent organic cations on sepiolite: experimental results and model calculations[J]. Clays and Clay Minerals, 1998, 46(3): 340
[5] Luo B P, Ren B Y.Study on sepiolite surface modification and reinforcing properties for rubber[J]. Journal of Changsha University, 1999, 13(2): 27(罗北平, 任碧野. 海泡石表面改性及其对橡胶性能补强的研究[J]. 长沙大学学报, 1999, 13(2): 27)
[6] Y. P. Zheng, Y. Zheng.Study on sepiolite-reinforced polymeric nanocomposites[J]. Journal of Applied Polymer Science, 2010, 99(5): 2163
[7] M. Sugiura, M. Horii, H. Hayashi, et al.Application of sepiolite to prevent bleeding and blooming for EPDM rubber composition[J]. Applied Clay Science, 1996, 11(2): 89
[8] Zou D R.Study on application of sepiolite in formula of EPDM rubber[J]. Non-Metallic Mines, 2002, 25(5): 28(邹德荣. 海泡石在EPDM橡胶配方中的应用研究[J]. 非金属矿, 2002, 25(5): 28)
[9] Zhao Q L, Li X G, Gao J, et al.Aging Research of Ethylene-Propylene-Diene-Monomer (EPDM) Rubber[J]. Insulating Materials, 2010, 43(1): 37(赵泉林, 李晓刚, 高瑾等. 三元乙丙橡胶老化研究进展[J]. 绝缘材料, 2010, 43(1): 37)
[10] A. -M. Lepadatu, S. Asaftei, N. Vennemann. Investigation of new composite materials based on activated EPDM rubber waste particles by liquid polymers[J]. Journal of Applied Polymer Science, 2015, 132(25): 1
[11] C. Bétron, P. Cassagnau, B. -L. Véronique. Control of diffusion and exudation of vegetable oils in EPDM copolymers[J]. European Polymer Journal, 2016, 82: 102
[12] Zheng C C, Zuo P Y, Feng S H.Study on the thermo-oxidative aging performance of EPDM, ACM and EPDM/ACM[J]. China Rubber Industry, 2014, 61(12): 731(郑丛丛, 左培艳, 冯绍华. 三元乙丙橡胶、丙烯酸酯橡胶及其共混胶的热氧老化性能研究[J]. 橡胶工业, 2014, 61(12): 731)
[13] V. M. Archodoulaki, S. Lüftl, S. Seidler.Oxidation induction time studies on the thermal degradation behavior of polyoxymethylene[J]. Polymer Testing, 2006, 25: 83
[14] W. K. Wong, Y. G. Hsuan.Interaction of antioxidants with carbon black in polyethylene using oxidative induction time methods[J]. Geotextiles and Geomembranes, 2014, 42: 641
[15] M. Hoyos, P. Tiemblo, J. M.Gómez-Elvira, et al. Role of the interphase dynamics in the induction time of the thermo-oxidation of isotactic polypropylene[J]. Polymer Degradation and Stability, 2006, 91: 1433
[16] D. S. Rosa, J. Sarti, L. H. I.Mei, et al. A Study of parameters interfering in oxidative induction time (OIT) results obtained by differential scanning calorimetry in polyolefin[J]. Polymer Testing, 2000, 19(5): 523
[17] Li P, Zhou S Y.Evaluation of antioxidants for chloroprene rubber by DTA[J]. China Synthetic Rubber Industry, 1989, 12(4): 227(李萍, 周述尧, 用差热分析方法评选CR防老剂[J]. 合成橡胶工业, 1989, 12(4): 227)
[18] Cao Y X, Zheng Q, Du M.Relationships between thermo-oxidation and dynamic rheological behavior of EPDM[J]. Acta Polymerica Sinica, 2005, 3: 408(曹艳霞, 郑强, 杜淼. EPDM受热氧化与动态流变行为[J]. 高分子学报, 2005, 3: 408)
[19] H. W. Chou, J. S. Huang, S. T. Lin.Effect of thermal aging on fatigue of carbon black-reinforced EPDM Rubber[J]. Journal of Applied Polymer Science, 2007, 103(2): 1244
[20] N. S. Tomer, F. Delor-Jestin, R. P. Singh, et al.Cross-linking assessment after accelerated ageing of ethylene propylene diene monomer rubber[J]. Polymer Degradation and Stability, 2007, 92(3): 457
[21] Chen E F, Deng W W, Han Y F, et al.Thermal aging behavior and prediction of BP neural network of EPDM rubber[J]. New Chemical Materials, 2010, 38(10): 80(陈尔凡, 邓雯雯, 韩云凤等. 三元乙丙橡胶的热老化行为及其BP神经网络预测[J]. 化工新型材料, 2010, 38(10): 80)
[22] Z. Peng, X. Liang, Y. Zhang.Reinforcement of EPDM by in situ prepared Zinc dimethacrylate[J]. Journal of Applied Polymer Science, 2002, 84: 1339
[23] S. Akhlaghi, M. Kalaee, S. Mazinani, et al.Effect of Zinc oxidenanoparticles on isothermal cure kinetics, morphology and mechanical properties of EPDM rubber[J]. Thermochim Acta, 2012, 527: 91
[24] P. H. Lye, H. K. Toh.Study of rubber oxidation by thermoanalysis[J]. Journal of Applied Polymer Science, 1984, 29: 2627
[25] C. D. Doyle.Estimating isothermal life from thermogravimetric data[J]. Journal of Applied Polymer, 1962, 6: 639
[26] Hu H H, Zhang Q R, Tian Y W.Improvement in the thermooxidation stability of EPDM rubber[J]. Journal of South China University of Technology (Natural Science), 1994, 22(6): 140(胡慧欢, 张庆荣, 田育武. 提高三元乙丙橡胶耐热老化性能的研究, 华南理工大学学报(自然科学版), 1994, 22(6): 140)
[27] Ge G J, Li C Q, Huang Z G, et al.Effect of silane coupling agents on properties of solution polymerized styrene-butadiene rubber/silica composite aged in hot air[J]. China Synthetic Rubber Industry, 2013, 36(4): 298(葛国杰, 李超芹, 黄兆阁等. 硅烷偶联剂对热空气老化过程中溶聚丁苯橡胶/白炭黑复合材料性能的影响[J]. 合成橡胶工业, 2013, 36(4):298)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!