Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (4): 300-308    DOI: 10.11901/1005.3093.2016.283
ARTICLES Current Issue | Archive | Adv Search |
Mechanical Properties of Carbon Fiber Reinforced Hollow Glass Microsphere/Epoxy Composite
Wei YU(), Yadong WANG, Renliang ZHANG, Ting LI, Huijian LI
Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004, China
Cite this article: 

Wei YU, Yadong WANG, Renliang ZHANG, Ting LI, Huijian LI. Mechanical Properties of Carbon Fiber Reinforced Hollow Glass Microsphere/Epoxy Composite. Chinese Journal of Materials Research, 2017, 31(4): 300-308.

Download:  HTML  PDF(3237KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composites of hollow glass microspheres/epoxy resin were reinforced with carbon fibers (CF) of 1 mm and/or 2 mm in length, with mass fraction: 0.2%, 0.5%, 1% and 3% for the two fibers, respectively. The effect of the length and content of fibers on the flexural strength and flexural modulus, compressive strength and compressive elastic modulus of composites was investigated by three-point bending tester and compression testing. The experimental results show that the addition of carbon fibers of two different lengths can significantly improve the flexural and compressive properties of composite materials. The flexural strength and compressive strength of the composite increase firstly and then decrease with the increasing mass fraction of carbon fibers, which reach a maximum value when the fiber mass fraction is 0.5%, and then decrease with the increasing content of carbon fibers. When the length of carbon fiber is 1mm and the fiber mass fraction is 0.5%, the flexural strength increased by 198% and the compressive strength increased by 110% in contrast to that without addition of carbon fiber. When the length of carbon fiber is 1mm, the change of fiber content has great influence on the flexural strength, compressive strength and compressive modulus of the composite. However, when the length of carbon fiber is 2 mm the effect of the change of fiber content on the flexural strength and compressive strength of composites is a little.

Key words:  composite      carbon fiber      hollow glass microsphere/epoxy      flexural strength      compressive strength     
Received:  30 June 2016     
ZTFLH:  TB332  
Fund: Supported by Natural Science Foundation of Hebei Province (No.A2014203051) and Hebei Institution of Higher Education Scientific Research Plan (No.Z2015089)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.283     OR     https://www.cjmr.org/EN/Y2017/V31/I4/300

No. Epoxy Hollow glass Carbon Mass
resin/g Microsphere/g fiber/g ratio
1 200 10 0 0
2 200 10 0.4 0.2%
3 200 10 1 0.5%
4 200 10 2 1%
5 200 10 6 3%
Table 1  Carbon fiber-microsphere/epoxy material ratio
Fig.1  Flexure specimens
Fig.2  Compression specimens
Fig.3  Flexural load-displacement curves of carbon fiber-microsphere/epoxy specimens
Fiber mass ratio Carbon length
/mm
Density
/gcm-3
Strength
/MPa
Specific strength
/MPacm3g-1
Modulus
/MPa
0 0 0.927 13.05 14.08 526
0.2% 1 0.925 31.53 34.09 1732
2 0.923 28.52 30.90 1322
0.5% 1 0.926 38.94 42.05 1874
2 0.925 30.36 32.82 1463
1% 1 0.928 30.53 32.90 1315
2 0.928 28.65 30.87 1376
3% 1 0.931 25.76 27.67 1292
2 0.932 26.85 28.81 1451
Table 2  Flexural test data of specimens
Fig.4  Flexural strength of carbon fiber-microsphere/epoxy composites
Fig.5  Flexural specific strength of carbon fiber-microsphere/epoxy composites
Fig.6  Flexural modulus of carbon fiber-microsphere/epoxy composites
Fig.7  Compressive stress-strain curves of carbon fiber-microsphere/epoxy with different fiber mass ratio
Fiber mass ratio Carbon length
/mm
Yield limit
/MPa
Specific strength
/MPacm3g-1
Modulus
/MPa
0 0 20.58 22.20 543
0.2% 1 33.32 36.02 775
2 35.44 38.40 903
0.5% 1 43.22 46.67 1270
2 36.26 39.20 1062
1% 1 26.57 28.63 729
2 34.72 37.41 890
3% 1 24.72 26.55 596
2 32.04 34.38 613
Table 3  Compressive test data of specimens
Fig.8  Compressive strength of carbon fiber-microsphere/epoxy composites
Fig.9  Compressive modulus of carbon fiber-microsphere/epoxy composites
Fig.10  Fracture SEM photos of bending specimen (a) and (b) 1%CF1 mm, (c) 0.2%CF1 mm, (d) 0.5%CF1 mm, (e) 3%CF1 mm, (f) 0.2%CF2 mm, (g) 0.5%CF2 mm, (h) 3%CF2 mm
[1] Nikhil G, Raymond Y, Maurizio P.Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams[J]. Compos. Part B, 2010, 41(3): 236
[2] Bardella L, Genna F.On the elastic behavior of syntactic foams[J]. Int. J. Solids Struct., 2001, 38(40-41): 7235
[3] Lu Z X.A review of studies on the mechanical behavior of syntactic foamed plastics[J]. Adv. Mech., 2004, 34(3): 341(卢子兴. 复合泡沫塑料力学行为的研究综述[J]. 力学进展, 2004,34(3): 341)
[4] Lu Z X, Shi S L, Zou B, et al.Compressive behavior of epoxy syntactic foam[J]. Acta. Mater. Compos. Sin., 2005, 22(4): 17(卢子兴, 石上路, 邹波等. 环氧树脂复合泡沫材料的压缩力学性能[J]. 复合材料学报, 2005, 22(4): 17)
[5] Bai Z Z, Zhao X L, Luo X F, et al.Research on preparation and properties of hollow glass bead filled epoxy composites[J]. Thermosetting Resin. 2009, 24(2): 32(白战争, 赵秀丽, 罗雪方等. 空心玻璃微珠/环氧复合材料的制备及性能研究[J]. 热固性树脂, 2009, 24(2): 32)
[6] Gupta N, Ricci W.Comparison of compressive properties of layered syntactic foams having gradient in microballoon volume fraction and wall thickness[J]. Mater. Sci. Eng. A, 2006, 427(1-2): 331
[7] Lu Z X, Zou B, Li Z M, et al.Mechanical properties of polyurethane foams filled by micro-spheres[J]. Acta Mater. Compos. Sin., 2008, 25(6): 175(卢子兴, 邹波, 李忠明等. 空心微珠填充聚氨酯泡沫塑料的力学性能[J]. 复合材料学报, 2008, 25(6): 175)
[8] Yu M, Zhu P, Ma Y Q.Experimental study and numerical prediction of the elastic properties of syntactic foams considering the interfacial effect[J]. Acta Mater. Compos. Sin., 2013, 30(3): 225(喻明,朱平,马颖琦. 考虑界面效应的复合泡沫塑料弹性性能数值仿真预测与试验研究[J]. 复合材料学报, 2013, 30(3): 225)
[9] Meng F M, Wang P, Li R, et al.Research on preparation and properties of solid buoyancy materials filled with hollow glass microspheres[J]. Mater. Chin., 2014, 33(9-10): 608(孟凡明, 王鹏, 李瑞等. 空心玻璃微珠填充固体浮力材料的制备及性能研究[J]. 中国材料进展, 2014, 33(9-10): 608)
[10] Yu W, Li H J, He C J, et al.Mechanical properties of epoxy resin filled with hollow glass bead[J]. Acta Mater. Compos. Sin., 2010, 27(4): 189(余为, 李慧剑, 何长军等. 空心玻璃微珠填充环氧树脂复合材料力学性能研究[J]. 复合材料学报, 2010, 27(4): 189)
[11] Liang X, Li H J, Yu W, et al.Elastoplastic simulation of hollow particle filled composites[J]. Acta Mech. Solida Sin., 2013, 34(1): 73(梁希, 李慧剑, 余为等. 空心颗粒填充复合材料弹塑性力学行为模拟[J]. 固体力学学报, 2013, 34(1): 73)
[12] Chen Z, Huang Z X, Qin Y, et al.Compressive property of hollow glass microsphere/epoxy resin syntactic foam and its fracture mechanism[J]. Acta Mater. Compos. Sin., 2013, 30(2): 31(陈卓, 黄志雄, 秦岩等. 空心微球/环氧树脂复合泡沫塑料的抗压性能与破坏机制[J]. 复合材料学报, 2013, 30(2): 31)
[13] Wang B, Huang C, Huang Z X, et al.Effect of different coupling agents on interfacial properties of hollow glass microsphere/phenolic syntactic foams[J]. Chin. J. Mater. Res., 2016, 30(3): 209(汪波, 黄赤, 黄志雄等. 不同偶联剂对空心玻璃微球/酚醛复合泡沫塑料界面性能的影响[J]. 材料研究学报, 2016, 30(3): 209)
[14] Ferreira J A M, Capela C, Costa J D. A study of the mechanical behaviour on fibre reinforced hollow microspheres hybrid composites[J]. Compos. Part A, 2010, 41(3): 345
[15] Wang L J, Zhang J, Yang X, et al.Flexural properties of epoxy syntactic foams reinforced by fiberglass mesh and/or short glass fiber[J]. Mater. Des., 2014, 55(3): 929
[16] Chen L J, Wu F Q, Zhang X Y, et al.Modification and its mechanism of carbon fiber/epoxy resin composite material[J]. Chin. Synthetic Resin Plast., 2008, 25(1): 75(陈立军, 武凤琴, 张欣宇等. 碳纤维/环氧树脂复合材料的改性及改性机理[J]. 合成树脂及塑料, 2008, 25(1): 75)
[17] Huang H, Li D X, Ming H, et al.Effects of hollow glass bead on properties of fiber reinforced polypropylene[J]. Eng. Plast. Appl., 2012, 40(4): 80(黄虹, 李道喜, 明浩等. 空心玻璃微珠对碳纤维增强聚丙烯性能的影响研究[J]. 工程塑料应用, 2012, 40(4): 80)
[18] Wang T M, Chen S B, Wang Q H, et al.Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead[J]. Mater. Des., 2010, 31(8): 3810
[19] Wang Q H, Zhang X R, Pei X Q.Study on the synergistic effect of carbon fiber and graphite and nanoparticle on the friction and wear behavior of polyimide composites[J]. Mater. Des., 2010, 31(8): 3761
[20] Ai J Y, He Y J, Xiao S T.A study on the preparation and the properties of carbon fiber reinforced polycarbonate[J]. FRP/CM, 2010, (2): 38(艾娇艳, 何元锦, 肖舜通. 碳纤维/聚碳酸酯复合材料研究[J]. 玻璃钢/复合材料, 2010, (2): 38)
[21] Yi Z B, Feng L B, Hao X Z, et al.Effect of surface treatment on properties of carbon fiber and reinforced composites[J]. Chin. J. Mater. Res., 2015, 29(1): 97(易增博, 冯利邦, 郝相忠等. 表面处理对碳纤维及其复合材料性能的影响[J]. 材料研究学报, 2015, 29(1): 97)
[22] Han S, Duan Y X, Li C, et al.Bending properties of non-crimp stitched carbon fabric reinforced composites of different knit patterns[J]. Acta Mater. Compos. Sin., 2011, 28(5): 52(韩帅, 段跃新, 李超等. 不同针织结构经编碳纤维复合材料弯曲性能[J]. 复合材料学报, 2011, 28(5): 52)
[23] Huang Y J, Vaikhanski L, Nutt S R.3D long fiber-reinforced syntactic foam based on hollow polymeric microspheres[J]. Compos. Part A, 2006, 37: 488
[24] Wouterson E M, Boey F YC, Hu Xiao, et al.Effect of fiber reinforcement on the tensile, fracture and thermal properties of syntactic foam[J]. Polym., 2007, 48: 3183
[25] Lu Z X, Wang S, Li Z M, et al.Macroscopic and microscopic mechanical properties of polyurethane syntactic foams filled with hollow microspheres[J]. Acta Aeronaut. Astronaut. Sin., 2006, 27(5): 799(卢子兴, 王嵩, 李忠明等. 空心微珠填充聚氨酯复合泡沫塑料的宏、细观力学性能[J]. 航空学报, 2006, 27(5): 799)
[26] Yu M, Zhu P, Ma Y Q.Experimental study and numerical prediction of tensile strength properties and failure modes of hollow sphere filled syntactic foams[J]. Comp. Mater. Sci., 2012, 63: 232
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!