Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (3): 161-177    DOI: 10.11901/1005.3093.2014.801
Current Issue | Archive | Adv Search |
Topological Quantum Materials and Quantum Anomalous Hall Effect
Ke HE(),Qikun XUE()
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
Cite this article: 

Ke HE,Qikun XUE. Topological Quantum Materials and Quantum Anomalous Hall Effect. Chinese Journal of Materials Research, 2015, 29(3): 161-177.

Download:  HTML  PDF(4075KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

We briefly review topological quantum materials, a new system of materials developed since 2005, including topological insulators, topological crystalline insulators, topological superconductors, and topological semimetals. The strong spin-orbit coupling in these materials lead to rich quantum phenomena such as quantum anomalous Hall effect, which can significantly promote the developments of new technologies such as low-energy-consuming electronics, topological quantum computation, and green energy.

Key words:  review      topological insulator      quantum Hall effect      quantum anomalous Hall effect     
Received:  12 August 2014     
Fund: *Supported by National Natural Science Foundation of China No. 11174343.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.801     OR     https://www.cjmr.org/EN/Y2015/V29/I3/161

Fig.1  Landau levels (a) and integer quantum Hall effect (b) formed in two-dimensional electron gas in strong magnetic field. The blue and green lines in figure(b) indicate Hall and longitudinal resistances, respectively. (Figure from wikipedia: http://en.wikipedia.org/wiki/Quantum_Hall_effect)
Fig.2  Schematics of chiral edge states of quantum Hall effect/quantum anomalous Hall effect (a), helical edge states of quantum spin Hall effect (b), and Dirac surface states of three-dimensional topological insulator. The arrows in (a) and (b) indicate current direction. The line colors indicate spin direction. The arrows in (c) indicate spin direction
Fig.3  Structure of two-dimensional topological insulator (Hg, Cd)Te/HgTe/(Hg, Cd)Te quantum well(a) and the experimentally measured quantum spin Hall effect (b) (Figure from Ref. [18])
Fig.4  Crystal structure (a) and theoretically calculated (b) and experimentally measured (c) surface band structure of three-dimensional topological insulator Bi2Se3. (Part of figure from Ref.[32])
Fig.5  Evolution of the surface band structure of MBE-grown Bi2Se3 thin films with thickness measured with ARPES. (Figure from Ref. [49])
Fig.6  Schematics of quantum anomalous Hall effect: magnetic field dependence of the Hall resistance (a); chemical potential dependence of the Hall and longitudinal conductances (b)
Fig.7  Hall traces of Cr-doped (BixSb1-x)2Te3 films with different Bi concentrations (a-f) and a schematic (g) and optic microscope photo of the field-effect device of Cr-doped (BixSb1-x)2Te3 film with SrTiO3 substrate as gate dielectric (Figure from Ref. [75, 79])
Fig.8  Experimental realization of the QAH effect: (a) Magnetic field dependence of ryx at different Vgs, (b) Dependence of ryx (0) (blue) and rxx (0) (red) on Vg (Figure from Ref. [79])
Fig.9  The QAH effect under strong magnetic field measured at 30 mK: Magnetic field dependence of ryx (a) and rxx (b) (Figure from Ref. [79])
1 Dirac P A M., The Principles of Quantum Mechanics(Oxford University Press, USA)
2 FENG Dua, JIN Guojun,Condensed Matter Physics(Beijing, Higher Education Press, 2013)
3 Hall E H,On a new action of the magnet on electric currents, American Journal of Mathematics, 2, 287(1879)
4 Klitzing K V,Dorda G, Peper M, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance, Physical Review Letters, 45, 494(1980)
5 Tsui D C,Stormer H L, Gossard A C, Two-dimensional magnetotransport in the extreme quantum limit, Physical Review Letters, 48, 1559(1982)
6 Avron J E,Osadchy D, Seiler R, A topological look at the Quantum Hall effect, Physics Today, 56(7), 38(2003)
7 Thouless D J, Kohmoto M, Nightingale M P, et al., Quantized hall conductance in a two-dimensional periodic potential, Physical Review Letters, 49, 405(1982)
8 Haldane F D M,Model for a quantum hall effect without landau levels: condensed-matter realization of the "Parity anomaly", Physical Review Letters, 61, 2015(1988)
9 Novoselov K S, Geim A K, Morozov S V, et al., Electric field effect in atomically thin carbon films, Science, 306(5696), 666(2004)
10 Kane C L,Mele E J, Quantum spin Hall effect in Graphene, Physical Review Letters, 95, 226801(2005)
11 Bernevig B A,Zhang S C, Quantum spin Hall effect, Physical Review Letters, 96, 106802(2006)
12 Fu L,Kane C L, Mele E J, Topological insulators in three dimensions, Physical Review Letters, 98, 106803(2007)
13 Fu L,Kane C L, Topological insulators with inversion symmetry, Physical Review B, 76, 045302(2007)
14 Hasan M Z,Kane C L, Colloquium: Topological insulators, Reviews of Modern Physics, 82(4), 3045(2010)
15 Qi X L,Zhang S C, Topological insulators and superconductors, Reviews of Modern Physics, 83, 1057(2011)
16 Bernevig B A,Hughes T L, Zhang S C, Quantum spin Hall effect and topological phase transition in HgTe Quantum Wells, Science, 314(5806), 1757(2006)
17 Hinz J, Buhmann H, Sch?fer M, et al., Gate control of the giant Rashba effect in HgTe quantum wells, Semiconductor Science and Technology, 21(4), 501(2006)
18 K?nig M, Wiedmann S, Brüne C, et al., Quantum spin Hall insulator state in HgTe Quantum Wells, Science, 318(5851), 766(2007)
19 Roth A, Brüne C, Buhmann H, et al., Nonlocal transport in the Quantum Spin Hall state, Science, 325(5938), 294(2009)
20 Liu C, Hughes T L, Qi X L, et al., Quantum spin Hall effect in inverted type-ii semiconductors, Physical Review Letters, 100, 236601(2008)
21 Knez I,Du R R, Sullivan G, Evidence for helical edge modes in inverted InAs/GaSb quantum wells, Physical Review Letters, 107, 136603(2011)
22 Murakami S,Quantum spin Hall Effect and enhanced magnetic response by spin-orbit coupling, Physical Review Letters, 97, 236805(2006)
23 Liu Z, Liu C X, Wu Y S, et al., Stable nontrivial Z2 topology in ultrathin Bi(111) films: A first-principles study, Physical Review Letters, 107, 136805(2011)
24 Liu C C,Feng W, Yao Y, Quantum spin Hall Effect in Silicene and two-dimensional Germanium, Physical Review Letters, 107, 076802(2011)
25 Xu Y, Yan B, Zhang H J, et al., Large-gap quantum spin Hall insulators in Tin films, Physical Review Letters, 111, 136804(2013)
26 Hirahara T, Bihlmayer G, Sakamoto Y, et al., Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te3, Physical Review Letters, 107, 166801(2011)
27 Yang F, Miao L, Wang Z F, et al., Spatial and energy distribution of topological edge states in single Bi(111) bilayer, Physical Review Letters, 109, 016801(2012)
28 Vogt P, Padova P D, Quaresima C, et al., Silicene: compelling experimental evidence for Graphenelike two-dimensional Silicon, Physical Review Letters, 108, 155501(2012)
29 Chen L, Liu C C, Feng B, et al., Evidence for Dirac Fermions in a honeycomb lattice based on Silicon, Physical Review Letters, 109, 056804(2012)
30 Weng H,Dai X, Fang Z, Transition-metal pentatelluride ZrTe5 and HfTe5 : A paradigm for large-gap quantum spin Hall insulators, Physical Review X, 4, 011002(2014)
31 Hsieh D, Qian D, Wray L, et al., A topological Dirac insulator in a quantum spin Hall phase, Nature, 452(7190), 970(2008)
32 Zhang H, Liu C X, Qi X L, et al., Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nature Physics, 5(6), 438(2009)
33 Xia Y, Qian D, Hsieh D, et al., Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nature Physics, 5(6), 398(2009)
34 Chen Y L, Analytis J G, Chu J H, et al., Experimental realization of a three-dimensional topological insulator Bi2Te3, Science, 325(5937), 178(2009)
35 Yan B,Zhang S C,?Topological materials, Reports on Progress in Physics, 75(9), 096501?(2012)
36 Liu C X, Zhang H J, Yan B, et al., Oscillatory crossover from two-dimensional to three-dimensional topological insulators, Physical Review B, 81, 041307(R)(2010)
37 Dai X, Hughes T L, Qi X L, et al., Helical edge and surface states in HgTe quantum wells and bulk insulators, Physical Review B, 77, 125319(2008)
38 Brüne C, Liu C X, Novik E G, et al., Quantum Hall effect from the topological surface states of strained bulk HgTe, Physical Review Letters, 106, 126803(2011)
39 Hor Y S, Richardella A, Roushan P, et al., p-type Bi2Te3 for topological insulator and low-temperature thermoelectric applications, Physical Review B, 79, 195208(2009)
40 Hsieh D, Xia Y, Qian D, et al., A tunable topological insulator in the spin helical Dirac transport regime, Nature, 460(7259), 1101(2009)
41 Kuroda K, Arita M, Miyamoto K, et al., Hexagonally deformed Fermi surface of the 3D topological insulator Bi2Se3, Physical Review Letters, 105, 076802(2010)
42 Zhang J, Chang C Z, Zhang Z, et al., Band structure engineering in(Bi1?xSbx)2Te3 ternary topological insulators, Nature Communications, 2(12), 574(2011)
43 Kong D, Chen Y, Cha J J, et al., Ambipolar field effect in the ternary topological insulator(BixSb1–x)2Te3 by composition tuning, Nature Nanotechnology, 6(11), 705(2011)
44 Ren Z, Taskin A A, Sasaki S, et al., Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se, Physical Review B, 82, 241306(2010)
45 Xiong J, Petersena AC, Qu D, et al., Quantum oscillations in a topological insulator Bi2Te2Se with large bulk resistivity(6Ωcm), Physica E, 44(5), 917(2012)
46 Arakane T, Sato T, Souma S, et al., Tunable Dirac cone in the topological insulator Bi2-xSbxTe3-ySey, Nature Communications, 3(1), 636(2011)
47 Li Y Y, Wang G, Zhu X G, et al., Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit, Advanced Materials, 22(36), 4002(2010)
48 Song C L, Wang Y L, Jiang Y P, et al., Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy, Applied Physics Letters, 97(14), 143118(2010)
49 Zhang Y, He K, Chang C Z, et al., Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit, Nature Physics, 6(8), 584(2010)
50 Wang G, Zhu X, Wen J, et al., Atomically smooth ultrathin films of topological insulator Sb2Te3, Nano Research, 3(12), 874(2010)
51 Roushan P, Seo1 J, Parker1 C V, et al., Topological surface states protected from backscattering by chiral spin texture, Nature, 460(7259), 1106(2009)
52 Zhang T, Cheng P, Chen X, et al., Experimental demonstration of topological surface states protected by time-reversal symmetry, Physical Review Letters, 103, 266803(2009)
53 Cheng P, Song C, Zhang T, et al., Landau quantization of topological surface states in Bi2Se3, Physical Review Letters, 105, 076801(2010)
54 Hanaguri T, Igarashi K, Kawamura M, et al., Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3, Physical Review B, 82, 081305(R)(2010)
55 Jiang Y, Wang Y, Chen M, et al., Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3, Physical Review Letters, 108, 016401(2012)
56 Okada Y, Zhou W, Dhital C, et al., Visualizing Landau levels of Dirac electrons in a one-dimensional potential, Physical Review Letters, 109, 166407(2012)
57 Seradjeh B,Moore J E, Franz M, Exciton condensation and charge fractionalization in a topological insulator film, Physical Review Letters, 103, 066402(2009)
58 Hall E H,On the "rotational coefficient" in nicked and cobalt, Philosophical Magazine, 12, 157(1881)
59 Nagaosa N, Sinova J, Onoda S, et al., Anomalous Hall effect, Reviews of Modern Physics, 82(2), 1539(2010)
60 Onoda M,Nagaosa N, Quantized anomalous Hall Effect in two-dimensional ferromagnets: Quantum Hall effect in metals, Physical Review Letters, 90, 206601(2003)
61 Qi X L,Wu Y S, Zhang S C, Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors, Physical Review B, 74, 085308(2006)
62 Liu C X, Qi X L, Dai X, et al, Quantum anomalous Hall Effect in Hg1?yMnyTe quantum wells, Physical Review Letters, 101, 146802(2008)
63 Qi X L,Hughes T L, Zhang S C, Topological field theory of time-reversal invariant insulators, Physical Review B, 78, 195424(2008)
64 Yu R, Zhang W, Zhang H J, et al., Quantized anomalous Hall effect in magnetic topological insulators, Science, 329(5987), 61(2010)
65 Nomura K,Nagaosa N, Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators, Physical Review Letters, 106, 166802(2011)
66 Assaf B A, Cardinal T, Wei P, et al., Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures, Applied Physics Letters, 102, 012102(2013)
67 Dietl T, Ohno H, Matsukura F, et al., Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science, 287(5455), 1019(2000)
68 Ohno H,Making nonmagnetic semiconductors ferromagnetic, Science, 281(5379), 951(1998)
69 Liu Q, Liu C X, Xu C, et al, Magnetic impurities on the surface of a topological insulator, Physical Review Letters, 102, 156603(2009)
70 Chien Y J,Transition Metal-Doped Sb2Te3 and Bi2Te3 Diluted Magnetic Semiconductors, Thesis of the University of Michigan, 2007
71 Hor Y S, Roushan P, Beidenkopf H, et al., Development of ferromagnetism in the doped topological insulator Bi2?xMnxTe3, Physical Review Letters B, 81, 195203(2010)
72 Chen Y L, Chu J H, Analytis J G, et al., Massive Dirac Fermion on the surface of a magnetically doped topological insulator, Science, 329(5992), 659(2010)
73 Xu S Y, Neupane M, Liu C, et al., Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator, Nature Physics, 8(8), 616(2012)
74 Checkelsky J G, Ye J, Onose Y, et al., Dirac-fermion-mediated ferromagnetism in a topological insulator, Nature Physics, 8(10), 729(2012)
75 Chang C Z, Zhang J, Liu M, et al., Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order, Advanced Materials, 25(7), 1065(2013)
76 Chang C Z, Tang P, Wang Y L, et al., Chemical-potential-dependent gap opening at the Dirac surface states of Bi2Se3 induced by aggregated substitutional Cr atoms, Physical Review Letters, 112, 056801(2014)
77 Zhang J, Chang C Z, Tang P, et al., Topology-driven magnetic quantum phase transition in topological insulators, Science, 339(6127), 1582(2013)
78 Chen J, Qin H J, Yang F, et al., Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3, Physical Review Letters, 105, 176602(2010)
79 Chang C Z, Zhang J, Feng X, et al., Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science, 340(6129), 167(2013)
80 Wang J, Lian B, Zhang H, et al., Quantum anomalous Hall Effect with higher plateaus, Physical Review Letters, 111, 136801(2013)
81 Wan X, Turner A M, Vishwanath Aet al, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Physical Review B, 83, 205101(2011)
82 Burkov A A,Balents L, Weyl semimetal in a topological insulator multilayer, Physical Review Letters, 107, 127205(2011)
83 Young S M, Zaheer S, Teo J C Y, et al., Dirac semimetal in three dimensions, Physical Review Letters, 108, 140405(2012)
84 Wang Z, Sun Y, Chen X Q, et al., Dirac semimetal and topological phase transitions in A3Bi(A=Na, K, Rb) Physical Review B, 85, 195320(2012)
85 Bonderson P, Das Sarma S, Freedman M, et al., A Blueprint for a topologically fault-tolerant quantum computer, Quantum Physics arXiv: 1003.2856(2010)
86 Fu L,Kane C L, Superconducting proximity effect and Majorana Fermions at the surface of a topological insulator, Physical Review Letters, 100, 096407(2008)
87 Wang?M X, Liu C, Xu J P, et al., The coexistence of superconductivity and topological order in the Bi2Se3 thin films, Science, 336(6077), 52(2012)
88 ?Wang?E, Ding H, Fedorov A V, et al., Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor, Nature Physics, 9(10), 621(2013)
89 Mourik V, Zuo K, Frolov S M, et al., Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science, 336(6084), 1003(2012)
90 Fu L,Topological crystalline insulators, Physical Review Letters, 106, 106802(2011)
91 Hsieh T H, Lin H, Liu J, et al., Topological crystalline insulators in the SnTe material class, Nature Communications, 3(7), 982(2012)
92 Dziawa P, Kowalski B J, Dybko K, et al., Topological crystalline insulator states in?Pb1?xSnxSe, Nature Materials, 11(12), 1023(2012)
93 Yan C, Liu J, Zang Y, et al., Experimental observation of Dirac-like surface states and topological phase transition in Pb1?xSnxTe(111) films, Physical Review Letters, 112, 186801(2014)
94 Fang C,Gilbert M J, Bernevig B A, Large-Chern-Number quantum anomalous Hall effect in thin-film topological crystalline insulators, Physical Review Letters, 112, 046801(2014)
95 Dzero M, Sun K, Galitski V, et al., Topological Kondo insulators, Physical Review Letters, 104, 106408(2010)
96 Lu F, Zhao J, Weng H, et al, Correlated topological insulators with mixed valence, Physical Review Letters, 110, 096401(2013)
97 Weng H, Zhao J, Wang Z, et al., Topological crystalline Kondo insulator in mixed valence Ytterbium borides, Physical Review Letters, 112, 016403(2014)
98 Neupert T, Santos L, Chamon C, et al., Fractional quantum Hall states at zero magnetic field, Physical Review Letters, 106, 236804(2011)
99 Sun K, Gu Z, Katsura H, et al., Nearly flatbands with nontrivial topology, Physical Review Letters, 106, 236803(2011)
100 Tang E,Mei J W, Wen X G, High-temperature fractional quantum Hall states, Physical Review Letters, 106, 236802(2011)
101 Liu Z, Wang Z F, Mei J W, et al., Flat Chern band in a two-dimensional organometallic framework, Physical Review Letters, 110, 106804(2013)
102 Liu Z K, Zhou B, Zhang Y, et al., Discovery of a three-dimensional topological Dirac semimetal, Na3Bi, Science, 343(6173), 864(2014)
103 Liu Z K, Jiang J, Zhou B, et al., A stable three-dimensional topological Dirac semimetal Cd3As2, Nature Materials, 13(7), 677(2014)
104 Xu G, Weng H, Wang Z, et al., Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Physical Review Letters, 107, 186806(2010)
[1] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] HE Ying, LI Chaoqun, CHEN Xiaoli, LONG Zhimei, LAI Jiaqi, SHAO Bin, MA Yilong, CHEN Dengming, DONG Jiling. Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties[J]. 材料研究学报, 2022, 36(5): 321-331.
[5] SHAO Siwu, ZHENG Yuting, AN Kang, HUANG Yabo, CHEN Liangxian, LIU Jinlong, WEI Junjun, LI Chengming. Progress on Application of Bias Technology for Preparation of Diamond Films[J]. 材料研究学报, 2022, 36(3): 161-174.
[6] ZHAO Ning, JIAO Da, ZHU Yankun, LIU Dexue, LIU Zengqian, ZHANG Zhefeng. Material Science Mechanism for Efficient Protection of Natural Armor[J]. 材料研究学报, 2022, 36(1): 1-7.
[7] SONG Xiaolong, LUO Weijing, NAN Yanli. A Review for Synthesis and Applications of Carbon Nanohorns[J]. 材料研究学报, 2021, 35(6): 401-410.
[8] ZHAO Wanli, SUO Hongli, LIU Min, MA Lin, DAI Yinming, ZHANG Zili. Research Progress in Preparation of MgB2 Bulk by Diffusion Method[J]. 材料研究学报, 2021, 35(6): 411-418.
[9] LANG Zhenqian, YE Zheng, YANG Jian, HUANG Jihua. Research Progress of Repair Technology for Surface Defects of Single Crystal Superalloy[J]. 材料研究学报, 2021, 35(3): 161-174.
[10] LI Zhuang, XU Qiujie, LIU Guojin, ZHANG Yunxiao, ZHOU Lan, SHAO Jianzhong. Structural Coloration of Photonic Crystals Based On Self-assembly of Colloid Microspheres[J]. 材料研究学报, 2021, 35(3): 175-183.
[11] YU Jianzhong, XV Xinling, YE Song. Research Progress on the Applications of Silver-loaded Zeolites[J]. 材料研究学报, 2021, 35(11): 801-810.
[12] HOU Zhiquan,GUO Meng,LIU Yuxi,DENG Jiguang,DAI Hongxing. Synthesis of Intermetallic Compounds and Their Catalytic Applications[J]. 材料研究学报, 2020, 34(2): 81-91.
[13] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
[14] ZHOU Haitao, WANG Yanbo, XIAO Lu, SUN Jingli, XU Yuling, CHEN Ge. Research Status and Developing Trends of Preparation and Interface Control of Magnesium Matrix Composites with Carbon-containing Reinforcements[J]. 材料研究学报, 2020, 34(11): 801-810.
[15] LEI Xuanwei,ZHOU Shuanbao,HUANG Jihua. Current Status and Development Trend on Weldability of Ultra-high Strength Hull Structure Steel[J]. 材料研究学报, 2020, 34(1): 1-15.
No Suggested Reading articles found!