Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (7): 549-554    DOI: 10.11901/1005.3093.2014.142
Current Issue | Archive | Adv Search |
Effect of Annealing Conditions on Microstructure of High Silicon Steel Prepared by Electrodeposition
Hui LI,Jinglong LIANG,Yungang LI(),Fenping ZHANG
Key Laboratory of Ministry of Education for Modern Metallurgy Technology, College of Metallurgy and Energy, Hebei United University, Tangshan 063009
Cite this article: 

Hui LI,Jinglong LIANG,Yungang LI,Fenping ZHANG. Effect of Annealing Conditions on Microstructure of High Silicon Steel Prepared by Electrodeposition. Chinese Journal of Materials Research, 2014, 28(7): 549-554.

Download:  HTML  PDF(2723KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of annealing temperature and time on the microstructure, distribution of silicon, texture and magnetism of the high silicon steel prepared by electrodeposition was investigated. The results showed that after annealing at 1000℃ for 210 min, the mean grain size of steel was about 190 μm with a uniform grain size distribution, and the silicon is also uniformly distributed on the entire cross section with an average Si concentration 6.3715% (close to 6.5%); With the increasing annealing time at high temperature, the texture with double crystal planes {100} and {110} preferential oriented microstructure was enhanced, and the iron loss was lowered, implying a relatively good magnetism for the high silicon steel prepared by the proposed process.

Key words:  metallic materials      high silicon steel      microstructure      Goss texture      magnetism     
Received:  26 March 2014     
Fund: *Supported by National Natural Science Foundation of China No.51274082.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.142     OR     https://www.cjmr.org/EN/Y2014/V28/I7/549

Element Si Cr Mn P S C O
1.6039 0.104051 0.721005 0.025782 0.002159 0.00231 0.06563
Table1  Main chemical composition of base sample (mass fraction, %)
Sample Temperature/℃ Holding time /min Average grain size/μm Average grain size grade
No.1 900 60 75.380 4.2
No.2 950 60 140.565 2.4
No.3 1000 60 184.838 1.6
No.4 1050 60 256.886 0.5
No.5 1000 90 187.421 1.5
No.6 1000 150 187.665 1.5
No.7 1000 180 188.376 1.5
No.8 1000 210 188.840 1.5
Table2  Sample annealing technological parameter after electrodeposition
Fig.1  OM images of samples annealed at 900℃ for 60 min (a), 950℃ for 60 min (b), 1000℃ for 60 min (c), 1050℃ for 60 min (d), 1000℃ for 90 min (e), 1000℃ for 150 min (f), 1000℃ for 180 min (g) and 1000℃ for 210 min (h)
Fig.2  Distribution of Si content in samples annealed at 900℃ for 60 min (a), 950℃ for 60 min (b), 1000℃ for 60 min (c), 1050℃ for 60 min (d), 1000℃ for 90 min (e), 1000℃ for 150 min (f), 1000℃ for 180 min (g), and 1000℃ for 210 min (h)
Fig.3  φ2=45°sections of ODFs for base sample (density level: 1, 2, 5, 7, 9, 9.2)
Fig.4  φ2=45°sections of ODFs for samples annealed (density level: 1, 2, 4, 6, 8, 8.5) (a) 60 min, 900℃, (b) 60 min, 950℃, (c) 60 min, 1000℃, (d) 60 min, 1050℃, (e) 1000℃, 90 min, (f) 1000℃, 150 min, (g) 1000℃, 180 min, (h) 1000℃, 210 min
Sample Temperature/℃ Time/min Average content of silicon/% Density ρ/kgdm-3 Magnetic strength B50/T Iron loss P1.5/50/Wkg-1
No.1 900 60 2.64 7.65 1.665 4.970
No.2 950 60 2.72 7.65 1.706 4.721
No.3 1000 60 3.20 7.63 1.687 4.57
No.4 1050 60 4.12 7.60 1.666 4.343
No.5 1000 90 4.50 7.55 1.683 3.447
No.6 1000 150 5.64 7.50 1.706 1.874
No.7 1000 180 5.32 7.50 1.708 1.884
No.8 1000 210 6.37 7.48 1.706 1.843
Table3  Electromagnetic properties of samples after annealing under different conditions
1 DONG Danyang,LIU Changsheng, ZHANG Bin, MIAO Jun, Effect of laser cladding high silicon coating on property of silicon steel, Chinese Journal of Materials Research, 21(4), 364(2007)
1 (董丹阳, 刘常升, 张 滨, 苗 隽, 硅钢表面激光镕覆高硅涂层对性能的影响, 材料研究学报, 21(4), 364(2007))
2 D. Ruiz, T. Ros-Yanez, R. E. Vandenberghe, E. De Grave, M. De Wulf, Y. Houbaert,Magnetic properties of high Si steel with variable ordering obtained through thermo mechanical processing, Journal of Applied Physics, 93(10), 7112(2003)
3 H. Haiji, K. Okada, T. Hiratani, M. Abe, M. Ninomiya,Magnetic properties and workability of 6.5% Si steel sheet, Journal of Magnetism and Magnetic Materials, 160, 109(1996)
4 Y. Ushigami, M. Mizokami, M. Fujikura, T. Kubota, H. Fujii, K.Murakami,Recent development of low-loss grain oriented silicon steel, Journal of Magnetism and Magnetic Materials, 254, 307(2003)
5 K. Okada, T. Yamaji, K. Kasai,Basic investigation of CVD method for manufacturing 6.5% Si steel sheet, ISIJ International, 36(6), 706(1996)
6 K. Fujita, M. Namikawa, Y. Takada,Magnetic properties and workability of 6.5% Si steel sheet manufactured by siliconizing process, Journal of Materials Science & Technology, 16(2), 137(2000)
7 ZHANG Defen,Investigation on textures and microstructures of 3014 aluminium alloy during processes of deformation and recrystallization, PhD thesis, Northeastern University(2004)
7 (张德芬,3104铝合金形变与再结晶过程中织构及微观组织的研究, 博士学位论文, 东北大学(2004))
8 MAO Weimin, Crystallographic Texture and Anisotropy of Metal Materials, 1(Beijing, Science Press, 2002) p.193
8 (193)
9 WANG Yufeng,JIN Zili, REN Huiping, WANG Haiyan, ZHANG Hongjie, EBSD investigation of cole-rolled non-oriented silicon steel in recrystallization annealing process, Journal of Chinese Electron Microscopy Society, 28(1), 39(2009)
9 (王玉峰, 金自力, 任慧平, 王海燕, 张红杰, 冷轧无取向硅钢再结晶退火过程的EBSD分析, 电子显微学报, 28(1), 39(2009))
10 J. T. Park, J. A. Szpunar,Evolution of recrystallization texture in non-oriented electrical steels, Acta Materialia, 51(11), 3037(2003)
11 DAI Libin,JIA Juan, ZHU Weiwei, SONG Xinli, YUAN Zexi, Effect of recrystallization annealing temperature on the texture and magnetic properties of non-oriented silicon steel, Journal of Wuhan University of Science and Technology, 32(2), 155(2010)
11 (代礼斌, 贾 涓, 朱微微, 宋新莉, 袁泽喜, 再结晶退火温度对无取向硅钢织构和磁性能的影响, 武汉科技大学学报, 32(2), 155(2010))
12 ZHANG Wenkang,MAO Weimin, BAI Zhihao, Influence of annealing temperature on structure, Texture and magnetic properties of cold rolled non-oriented silicon steel, Special Steel, 27(1), 15(2006)
12 (张文康, 毛卫民, 白志浩, 退火温度对冷轧无取向硅钢组织结构和磁性能的影响, 特殊钢, 27(1), 15(2006))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!