Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (7): 497-502    DOI: 10.11901/1005.3093.2013.936
Current Issue | Archive | Adv Search |
Morphological Characteristics and Mechanical Property of Continuous Drive Friction Welded Joints of Carbon Steel 45(GB)
Peng LI1,2,**(),Jinglong LI2,Li LIANG2,Jiangtao XIONG2,Fusheng ZHANG2,Jinwen QIAN2
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
2. Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern University, Xi’an 710072
Cite this article: 

Peng LI,Jinglong LI,Li LIANG,Jiangtao XIONG,Fusheng ZHANG,Jinwen QIAN. Morphological Characteristics and Mechanical Property of Continuous Drive Friction Welded Joints of Carbon Steel 45(GB). Chinese Journal of Materials Research, 2014, 28(7): 497-502.

Download:  HTML  PDF(2944KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of friction pressure and time on morphological characteristics and mechanical property of the continuous drive friction welded joints of medium carbon steel 45(GB) was investigated in terms of the newly proposed two character factors, i.e. sticky length to diameter ratio α = length of welded zone / original diameter and scaling factor η = width of outer heat affected zone / width of center heat affected zone. The results show that, with the increase of friction pressure the sticky length to diameter ratio α increases firstly and then decreases, while the scaling factor η increases all along. However, by a friction pressure 60 MPa, the sticky length to diameter ratio α increases and the scaling factor η decreases continuously with the increasing friction time. When the integrative factor δ (δ=η/α) falls in a range 1.15-1.31, the mechanical property of joints is good because the heat input is moderate, which therefore can be used as a criterion of selection of welding parameters for gaining good performance of the continuous drive friction welded joints of the steel 45(GB).

Key words:  metallic materials      morphological characteristic      continuous drive friction welding      medium carbon steel 45(GB)      mechanical property     
Received:  10 December 2013     
Fund: *Supported by National Nature Science Foundation of China No. 51071123, the Fund of the Innovation Project of Shaanxi Province Overall Plan on Science and Technology No. 2012HBSZS021, and Northwestern University Foundation for Fundamental Research No. JC20120224.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.936     OR     https://www.cjmr.org/EN/Y2014/V28/I7/497

Friction pressure Pf / MPa Friction time tf / s Upset pressure Pu / MPa Upset time tu / s
15 2 15 5
30 30
90 90
60 1 60
2
3
Table 1  Parameters used in this study
Fig.1  Schematic diagram of weld appearance and characteristic parameters
Fig.2  Variations on (a) appearance and (b) axial shortening of joints welded at 2 s with different friction pressures
Fig.3  Optical micrographs of joints welded at 2 s with different friction pressures
Pf/MPa H/mm Lo/mm Lc/mm α η
15 16.27 4.23 3.71 1.16 1.14
30 16.39 4.05 3.02 1.17 1.34
60 16.58 3.83 2.81 1.19 1.37
90 15.73 3.81 2.42 1.12 1.57
Table 2  Values of characteristic parameters of the joints welded at 2 s with different friction pressures
Fig.4  Variations of (a) sticky length to diameter ratio α and (b) scaling factor η with friction pressure
Fig.5  Variations on (a) appearance and (b) axial shortening of joints welded at 60 MPa with different friction times
Fig.6  Optical micrographs of joints welded at 60 MPa with different times
tf / s H / mm Lo / mm Lc / mm α η
1 16.10 3.37 2.33 1.15 1.45
2 16.66 3.84 2.81 1.19 1.37
3 16.94 4.32 3.20 1.21 1.35
Table 3  Values of characteristic parameters of the joints welded at 60 MPa with different friction times
Fig.7  Variations of (a) stick length to diameter ratio α and (b) scaling factor η with friction time
Fig.8  Variations of tensile strength with (a) 2 s with different friction pressures and (b) 60 MPa with different friction times
Fig.9  Variations of tensile strength with (a) stick length to diameter ratio α (b) scaling factor η
Fig.10  Variations of tensile strength with integrative factor δ
1 LIU Jun,The developments and applications of friction welding in America, Welding Technology, 4, 46(1995)
1 (刘 军, 摩擦焊在美国的应用与发展, 焊接技术, 4, 46(1995))
2 LIANG Hai,ZHANG Zheng, Application of inertia friction welding on aircraft engines, Journal of Materials Engineering, (2), 48(1992)
2 (梁 海, 张 峥, 惯性摩擦焊在航空发动机上的应用, 材料工程, (2), 48(1992)
3 LIU Xuemei,ZHANG Yanhua, ZOU Zengda, WANG Xinhong, QU Shiyao, Developments and applications of the advanced friction welding technologies, Hot Working Technology, 35(7), 49(2006)
3 (刘雪梅, 张彦华, 邹增大, 王新洪, 曲仕尧, 先进摩擦焊接技术的开发与应用, 热加工工艺, 35(7), 49(2006))
4 V. I. Vill, Friction welding of metals,(New York, American Welding Society, trade distributor: Reinhold Pub. Co., 1962) p.33
5 B. Crossland,friction welding, Contemporary Physics, 12(6), 559(1971)
6 J. W. Qian, J. L. Li, F. Sun, J. T. Xiong, F. S. Zhang, X. Lin,An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joint, Scripta Materialia, 68(3-4), 175(2013)
7 P. Sathiya, S. Aravindan, A. N. Haq, K. Paneerselvam,Optimization of friction welding parameters using evolutionary computational techniques, Journal of Materials Processing Technology, 209(5), 2576(2009)
8 DUAN Liyu,LIU Jinhe, DU Suigeng, Developments of physics research on the friction welding, Journal of Northwestern Polytechnical University, 11(S1), 9(1993)
8 (段立宇, 刘金合, 杜随更, 摩擦焊接物理研究进展, 西北工业大学学报, 11(S1), 9(1993))
9 M. Ahin, H. E. Akata,Joining with friction welding of plastically deformed steel, Journal of Materials Processing Technology, 142(1), 239(2003)
10 G. M. Reddy, K. S. Rao,Microstructure and mechanical properties of similar and dissimilar stainless steel electron beam and friction welds, International Journal of Advance Manufacture Technology, 45(9), 875(2009)
11 M. B. Uday, M. N. Ahmad Fauzi, H. Zuhailawati, A. B. Ismail,Advances in friction welding process: a review, Science and Technology of Welding and Joining, 15(7), 534(2010)
12 ASM International, ASM Metals Handbook Volume 6: Welding, Brazing and Soldering,(USA, The Materials Information Company, 1992) p.509
13 R. H. Khalid, R. G. Janaki, G. P. Phanikumar, K. P. Rao,Microstructure and tensile properties of friction welded aluminum alloy AA7075-T6, Materials and Design, 31(5), 2375(2010)
14 W. Y. Li, F. F. Wang,Modeling of continuous drive friction welding of mild, Materials Science and Engineering A, 3(11), 1(2011)
15 CHENG Zhunian, The Chinese Welding Engineer Handbook, The second edition (Beijing, Machinery Industry Press, 2010) p.671
15 (陈祝年, 焊接工程师手册(第二版), (北京: 机械工业出版社, 2010) p.671)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!