Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (5): 325-332    DOI: 10.11901/1005.3093.2013.777
Current Issue | Archive | Adv Search |
Hydration Characteristics of Intermediate-Calcium Based Cementitious Materials from Red Mud and Coal Gangue
Na ZHANG1,Xiaoming LIU2,**(),Henghu SUN1,3
1. Green Construction Materials and Circulation Economy Center, Architectural Design and Research Institute of Tsinghua University Co., Ltd., Beijing 100084
2. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
3. Pacific Resources Research Center, University of the Pacific, Stockton, CA 95211, USA
Cite this article: 

Na ZHANG,Xiaoming LIU,Henghu SUN. Hydration Characteristics of Intermediate-Calcium Based Cementitious Materials from Red Mud and Coal Gangue. Chinese Journal of Materials Research, 2014, 28(5): 325-332.

Download:  HTML  PDF(2050KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to deep understand the hydration characteristics of red mud-coal gangue based intermediate-calcium cementitious materials, XRD, IR, TG-DTA and MIP techniques were used to investigate the hydration products and pore structure of the hardened pastes, which formed after a hydration process of the red mud-coal gangue based intermediate-calcium cementitious materials. The results show that the hydration products mainly are C-S-H gel, ettringite and calcium hydroxide. As the dominant products, C-S-H gel and ettringite are principally responsible for the strengthening of the intermediate-calcium cementitious materials. By hydration for 1 d to 90 d, the content of calcium hydroxide increases at the initial stage and later decreases. With the progress of hydration process, the polymerization between Si-OH bonds tends to be easier, resulting in an increasing of polymerization degree of the hydration products. The red mud-coal gangue based intermediate-calcium cementitious materials with CaO/SiO2 ratios of 0.95 and 1.04 possess good pore structure of the hardened pastes, while the pore structure of the hardened paste for the material with CaO/SiO2 ratio of 1.13 is relatively poor.

Key words:  inorganic nonmetallic materials      intermediate-calcium based cementitious materials      microstructure      red mud      coal gangue      hydration     
Received:  18 October 2013     
Fund: *Supported by National Natural Science Foundation of China No. 51302012 and Beijing Municipal Science & Technology Special Project NO. Z131110000213046

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.777     OR     https://www.cjmr.org/EN/Y2014/V28/I5/325

Oxides SiO2 Al2O3 CaO Fe2O3 MgO Na2O K2O TiO2 SO3 LOI
Red mud 17.78 6.27 37.52 12.32 1.15 2.75 0.46 3.27 0.49 17.76
Coal gangue 49.41 21.32 2.52 6.02 1.56 1.44 2.85 0.94 0.65 12.75
Slag 33.59 14.37 38.32 1.11 8.43 0.18 0.11 0.85 2.26 0.44
Clinker 21.94 5.27 66.09 2.96 0.88 0.30 0.70 - 0.31 0.67
Table 1  Chemical composition of raw materials (mass fraction/%)
Sample Compound activated red mud-coal gangue Slag Clinker Gypsum
O 50 24 20 6
A 45 24 25 6
B 40 24 30 6
Table 2  Designed proportion of red mud-coal gangue based intermediate-calcium cementitious materials (mass fraction/%)
Sample CaO SiO2 Al2O3 Fe2O3 MgO Na2O K2O TiO2 SO3 Ca/Si (Ca+Mg)/ (Si+Al)
O 32.94 34.70 12.77 7.61 4.53 1.57 1.26 1.97 2.66 0.95 0.79
A 35.93 34.69 10.96 6.27 3.85 1.59 1.22 1.64 3.28 1.04 0.87
B 37.78 33.53 10.58 5.63 4.06 1.36 1.14 1.48 3.91 1.13 0.95
Table 3  Chemical composition of red mud-coal gangue based intermediate-calcium cementitious materials (mass fraction/%)
Fig.1  XRD patterns of the hydrated pastes at 3 days
Fig.2  XRD patterns of the hydrated pastes at 90 days
Fig.3  IR spectra of the hydrated pastes of sample O at different hydration days
Fig.4  IR spectra of the hydrated pastes of sample A at different hydration days
Fig.5  IR spectra of the hydrated pastes of sample B at different hydration days
Fig.6  IR spectra (wavenumbers between 4000cm-1 and 3000 cm-1) of hydrated pastes of samples O, A and B at 3 days
Fig.7  IR spectra (wavenumbers between 4000 cm-1 and 3000 cm-1) of hydrated pastes of samples O, A and B at 90 days
Fig.8  TG-DTA curves of hydrated pastes of sample O at 28 days
Fig.9  TG-DTA curves of hydrated pastes of sample A at 28 days
Fig.10  TG-DTA curves of hydrated pastes of sample B at 28 days
Fig.11  Mass loss of C-S-H gel and AFt of samples O, A and B at different hydration days
Fig.12  Mass loss of Ca(OH)2 of samples O, A and B at different hydration days
Sample Total pore volume (mL/g) Porosity (%) Pore size distribution (%)
<10 nm 10~50 nm 50 nm~1 μm >1 μm
O 0.2199 34.60 27.88 51.34 18.01 2.77
A 0.1861 29.44 28.75 56.80 12.20 2.26
B 0.1785 32.92 24.43 40.00 28.80 6.78
Table 4  Pore structure of the hardened pastes of samples O, A and B hydrated for 90 days
Fig.13  Average pore size of hardened pastes at different hydration days
Fig.14  The most probable pore size of hardened pastes at different hydration days
1 X. Liu, N. Zhang, H. Sun, J. Zhang, L. Li,Structural investigation relating to the cementitious activity of bauxite residue–red mud, Cem. Concr. Res., 41, 847(2011)
2 M. Singh, S. N. Upadhayay, P. M. Prasad,Preparation of special cements from red mud, Waste Manage., 16, 665(1996)
3 M. Singh, S. N. Upadhayay, P. M. Prasad,Preparation of iron rich cements using red mud, Cem. Concr. Res., 27, 1037(1997)
4 Z. Pan, L. Cheng, Y. Lu, N. Yang,Hydration products of alkali-activated slag-red mud cementitious material, Cem. Concr. Res., 32, 357(2002)
5 P. E. Tsakiridis, S. Agatzini-Leonardou, P. Oustadakis,Red mud addition in the raw meal for the production of Portland cement clinker, J. Hazard. Mater., 116, 103(2004)
6 I. Vangelatos, G. N. Angelopoulos, D. Boufounos,Utilization of ferroalumina as raw material in the production of Ordinary Portland Cement, J. Hazard. Mater., 168, 473(2009)
7 N. Zhang, X. Liu, H. Sun, L. Li,Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: Properties and hydration characteristics, J. Hazard. Mater., 185, 329(2011)
8 X. Liu, N. Zhang,Utilization of red mud in cement production: A review., Waste Manage. Res., 29(10), 1053(2011)
9 ZHANG Na,SUN Henghu, ZHANG Jixiu, WAN Jianhua, Effect of multiplex thermal activation on cementitious behavior of red mud-coal gangue, Rare Metal Materials and Engineering, 38(S2), 663(2009)
9 (张 娜, 孙恒虎, 张吉秀, 万建华, 复合热活化对赤泥-煤矸石胶凝性能的影响, 稀有金属材料与工程, 38(S2), 663(2009)
10 N. Zhang, X. Liu, H. Sun, L. Li,Pozzolanic behaviour of compound-activated red mud-coal gangue mixture, Cem. Concr. Res., 41, 270(2011)
11 N. Zhang, H. Sun, X. Liu, J. Zhang,Early-age characteristics of red mud-coal gangue cementitious material, J. Hazard. Mater., 167, 927(2009)
12 JIANG Weiming, Alkali-activated cementitious materials-mechanisms microstructure and properties (Pennsylvania, The Pennsylvania State University, 1997) p.114
13 X. Liu, N. Zhang, Y. Yao, H. Sun, H. Feng,Micro-structure characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials, J. Hazard. Mater., 262, 428(2013)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[10] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[11] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
[14] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[15] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
No Suggested Reading articles found!