Please wait a minute...
Chin J Mater Res  2012, Vol. 26 Issue (4): 396-401    DOI:
论文 Current Issue | Archive | Adv Search |
Low Grade Zinc Ore by Low Temperature Roasting Using (NH4)2SO4
SHEN Xiaoyi, SUN Yi, SONG Jiqiang, ZHAI Yuchun
School of materials & Metallurgy, Northeastern University, Shenyang 110004
Cite this article: 

SHEN Xiaoyi SUN Yi SONG Jiqiang ZHAI Yuchun. Low Grade Zinc Ore by Low Temperature Roasting Using (NH4)2SO4. Chin J Mater Res, 2012, 26(4): 396-401.

Download:  PDF(924KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The roasting clinker was successfully obtained by low temperature roasting employing low grade zinc ore as row material and ammonium sulfate as reaction medium. The influence of baking temperature in Zn extraction rate was investigated. The results show that the Zn extraction rate reaches to the maximum of 91.8% at 450℃ . The reaction was not sufficient at low temperature, in the contrary, the reaction rate decreased due to the decomposition and volatilization of H2SO4. The ZnSO4 solution was prepared through digestion and filtration processes, and then the pure ZnSO4 solution was gained through purification. The basic zinc carbonate precursor was prepared using homogeneous precipitation employing the ZnSO4 solution as raw materials and the ammonium carbamate as precipitant, and the ultrafine ZnO powder was obtained by calcining the ZnO precursor. XRD, SEM and chemical components analysis were adopted to characterize the as-prepared precursor and the ZnO powder. The results show that the precursor was obtained since the OH− and HCO−3 hydrolyzed from ammonia carbamate reacted with Zn2+ in solution, which was calcinated to prepare the ZnO powder through the dehydration and decomposition. The precursor is basic zinc carbonate of Zn4(CO3)(OH)6·H2O with adhesive spheric particles, and the ZnO powder is of hexagonal wurtzite structure with uniform spheric size and good dispersity.
Key words:  synthesizing and processing technics      low grade zinc ore      low temperature roasting      ZnO powder     
Received:  23 April 2012     
ZTFLH: 

TQ127

 
Fund: 

Supported by National Basic Research Program of China No.2007CB613603 and Fundamental Research Funds for the Central Universities No.110402012.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I4/396

1 LI Yong, WANG Jikun, REN Zhanyu, LI Cunxiong, WEI Chang, Development of treatment on zinc oxide ore, Mining and Metallurgy, 18(2), 57(2009)

(李  勇, 王吉坤, 任占誉, 李存兄, 魏昶, 氧化锌矿处理的研究现状, 矿冶, 18(2), 57(2009))

2 CHEN Bin, SHEN Xiaoyi, GU Huimin, SUN Yi, LI Deguan, ZHAI Yuchun, MA Peihua, Extraction of ZnO from zinc oxide ore by alkali roasting method, CIESC J., 63(2), 658(2012)

(陈  兵, 申晓毅, 顾惠敏, 孙  毅, 李德官, 翟玉春, 马培华, 碱焙烧法由氧化锌矿提取ZnO, 化工学报, 63(2), 658(2012))

3 HE Shanming, WANG Jikun, Review on research of metallurgical processing of zinc oxide ores, Mining and Metallurgy, 19(3), 58(2010)

(贺山明, 王吉坤, 氧化锌矿冶金处理的研究现状, 矿冶, 19(3), 58(2010))

4 XIA Zhimei, CHEN Yifeng, WANG Yufei, WANG Chao, LI Li, Development of Treating Low-Grade Zinc Oxide Ore by Hydrometallurgy, J. Hunan Univ. Technol., 24(6), 9(2010)

(夏志美, 陈艺峰, 王宇菲, 王 超, 李  丽, 低品位氧化锌矿的湿法冶金研究进展, 湖南工业大学学报,  24(6), 9(2010))

5 WANG Zhifa, PENG Zhihui, Characteristic of thermometallurgy of zinc oxide ore, J. Jishou Univ., 13(6), 116(1992)

(王志法, 彭志辉, 氧化锌矿火法炼锌的工艺特点, 吉首大学学报,  13(6), 116(1992))

6 S.Moradi, A.J.Monhemius, Mixed sulphide-oxide lead and zinc ores: Problems and solutions, Miner. Eng., 24(10), 062(2011)

7 HE Shanming, WANG Jikun, YAN Jiangfei, Pressure leaching of synthetic zinc silicate in sulfuric acid medium, Hydrometallurgy, 108(3–4), 171(2011)

8 XU Hongsheng, WEI Chang, LI Cunxiong, FAN Gang, DENG Zhigan, LI Minting, LI Xingbin, Sulfuric acid leaching of zinc silicate ore under pressure, Hydrometallurgy, 105(1-2), 186(2010)

9 M.K.Jha, V.Kumar, R.J.Singh, Review of hydrometallurgical recovery of zinc from industrial wastes, Resour. Conserv. Recy., 33(1), 1(2001)

10 WANG Ruixiang, TANG Motang, YANG Shenghai, ZHANG Wenhai, TANG Chaobo, HE Jing, YANG Jianguang, Leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system, J. Cent. South Univ. Technol., 15(5), 679(2008)

11 DING Zhiying, YIN Zhoulan, HU Huiping, CHEN Qiyuan, Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution, Hydrometallurgy, 104(2), 201(2010)

12 LIU Zhiyong, LIU Zhihong, CAO Zhiyan, LI Qihou, YANG Tianzu, Leaching mechanism of willemite in (NH4)2SO4-NH3-H2O systemThe, Chinese Journal of Nonferrous Metals, 21(11), 2929(2011)

(刘智勇, 刘志宏, 曹志阎, 李启厚, 杨天足, 硅锌矿在(NH4)2SO4-NH3-H2O体系中的浸出机理, 中国有色金属学报,  21(11), 2929(2011))

13 CHEN Ailiang, ZHAO Zhongwei, JIA Xijun, LONG Shuang, HUO Guangsheng, CHE Xingyu, Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore, Hydrometallurgy, 97(3-4), 228(2009)

14 FENG Linyong, YANG Xianwan, SHEN Qingfeng, XU Mingli, JIN Bingjie, Pelletizing and alkaline leaching of powdery low grade zinc oxide ores, Hydrometallurgy, 89(3-4), 305(2007)

15 M.N.Babu, K.K.Sahu, B.D.Pandey, Zinc recovery from sphalerite concentrate by direct oxidative leaching with ammonium, sodium and potassium persulphates, Hydrometallurgy,

64(2), 119(2002)

16 CHENG Qingtang, LI Feng, YAO Chao, XU Binhai, Preparation of zinc oxide nanocrystalline, New Chemical Materails, 36(2), 44(2008)

(成庆堂, 李峰, 姚超, 徐斌海, 纳米氧化锌的制备, 化工新型材料, 36(2), 44(2008))

17 SHA Muga, NA REN Tuya, NA HE Ya, Characteristics of ZnO nanoparticle prepared by direct precipitarion, Chinese Joournal of Spectroscopy Laboratory, 25(6), 1166(2008)

(莎木嘎, 娜仁图雅, 娜赫娅, 直接沉淀法制备纳米ZnO及标准, 光谱实验室, 25(6), 1166(2008))

18 QIN Feng, Wang Shujuan, Kim Inna, F H Svendsen, Chen Changhe, Heat of absorption of CO2 in aqueous ammonia and ammonium carbonate/carbonate solutions, Int. J. Greenhouse. Gas Control, 37(7), 2247(2011)
[1] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[2] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[3] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[4] CAI Guodong, CHENG Xiyun, WANG Dian. Preparation of 316L Stainless Steel Products by Fused Deposition Model 3D-printing and Effect of La on Morphology and Distribution of Precipitates[J]. 材料研究学报, 2020, 34(8): 635-640.
[5] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[6] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[7] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[8] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[9] Bin QIN,Qun WANG,FuMeng WANG,LiE JIN,XiaoLing XIE,Qing CAO. Preparation of Needle Cokes with High Electrical Conductivity and Low Coefficient of Thermal Expansion[J]. 材料研究学报, 2019, 33(1): 53-58.
[10] Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. 材料研究学报, 2018, 32(6): 409-414.
[11] Yanwei LI, Zhiping XIE, Canzheng LIU, Jinhuan YAO, Jiqiong JIANG, Jianwen YANG. Preparation and Lithium Storage Performance of Two Dimensional Fold-like V2O5 Nanomaterial[J]. 材料研究学报, 2017, 31(5): 374-380.
[12] Chengdong LI, Zhilei YAO, Ju LI, Jin XU, Xin XIONG. Preparation and Electrochemical Performance of LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Lithium-ion Batteries[J]. 材料研究学报, 2017, 31(5): 394-400.
[13] TANG Zhaohui, DING Xueyong, DONG Yue, LIU Chenghong, WEI Guo. Influence of w(MgO) on Viscous Flow Property of High Ti-containing Blast Furnace Slag[J]. 材料研究学报, 2016, 30(6): 443-447.
[14] TANG Xianyi, WEI Xiaohui, XU Deping, ZHANG Haiyong, HE Xin, XIONG Chu'an, TANG Hanying. Removal of QI from Medium-temperature Coal Tar Pitch and Preparation of Needle Coke through Carbonization[J]. 材料研究学报, 2016, 30(6): 448-456.
[15] ZHANG Juan, CHEN Xiujuan, ZHANG Penglin. Synthesis and Electrochemical Properties of Flower-like SnS2 by Triton X-100 Assisted Hydrothermal Method as Negative Electrode Material for Lithium Ion Batteries[J]. 材料研究学报, 2016, 30(1): 63-67.
No Suggested Reading articles found!