Please wait a minute...
Chin J Mater Res  2012, Vol. 26 Issue (4): 377-382    DOI:
论文 Current Issue | Archive | Adv Search |
Preparation of Ni–Cr Nanocomposite Coatings by D. C. and Pulsed D.C. Electroplating Technique
ZHANG Yan1, TIAN Miaomiao1, LIU Lei1, PENG Xiao2
1.School of Science, Shenyang University of Technology, shenyang 110023
2.Insititute of Metal Research, Chinese Academy of Science, shenyang 110016  
Cite this article: 

ZHANG Yan TIAN Miaomiao LIU Lei PENG Xiao. Preparation of Ni–Cr Nanocomposite Coatings by D. C. and Pulsed D.C. Electroplating Technique. Chin J Mater Res, 2012, 26(4): 377-382.

Download:  PDF(1035KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ni–Cr nanocomposite coatings were prepared by D. C. and pulsed D.C. electroplating technique, respectively, and the contents of Cr in the nanocomposite film was investigated. The results show that the codeposition of Cr nanoparticles in the nanocomposite coating by D.C. electroplating firstly increased with the Cr concentration in electrolyte bath, but the contents of Cr in the film prepared by pulsed D.C. electroplating are higher than those of the D.C. electroplating for the same concentration Cr in the electrolyte bath. The parabolic rate constant for the pulse nanocomposite coating is 2.85 times that of D.C. electroplating films after oxidation at 900   for 24 h, and the corrosion resistance of the pulse nanocomposite coatings is better than that of the D.C. electrodeposited films in Cl ion solution and acid solution. Meanwhile, the microhardness of the pulse nanomcoposite coatings is 2 times that of the D.C. electroplated films. The pulse electrodeposition can reduce the concentration distinction polarization on the surface of the pulse nanocomposite coatings, controll the shut off time, and increase the possibility
of nuclei formation, so the amounts of grain nuclei increase and the perfect nanocomposite coatings with finer grains and more compact structure can be obtained.
Key words:  composite material      pulsed nanocomposite coating      microstructure      property      Cr content     
Received:  11 February 2012     
ZTFLH: 

TG1331

 
Fund: 

Supported by National Nature Science Foundtion of China No.50571108 and No.51171199.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I4/377

1 S.Ranjan, D.Siddhartha, D.Karabi, Effect of stirring rate on the microstructure and microhardness of Ni–CeO2 nanocomposite coating and investigation of the corrosion property, Surface and Coatings Technology, 205, 3847(2011)

2 Y.B.Zhou, G.G.Zhao, H.J.Zhang, Fabrication and wear properties of co–deposited Ni–Cr nanocomposite coatings, Trans. Nonferrous Mct. Soc. China, 20, 104(2010)

3 A.C.Ciubotariu, L.Benea, M.L.Varsanyi, Electrochemical impedance spectroscopy and corrosion behaviour of A12O3–Ni nano composite coatings, Electrochimica Acta, 53, 4557(2008)

4 J.X.Yu, H.B.Liu, M.M.Lan, Effect of different electrodeposition methods on oxidation resistance of Ni–CeO2nanocomposite coating, Surface and Coatings Technology, 204, 3539(2010)

5 L.Benea, P.L.Bonora, Wear corrosion properties of nano–structured SiC–nickel composite coatings obtained by electroplating, Wear, 249, 995(2002)

6 X.Peng, D.Ping, T.Li, W.Wu, Oxidation behavior of a Ni–La2O3 codeposited film on nickel, J. electrochem. Soc., 145, 389(1998)

7 I.Garcia, A.Conde, G.Langelaan, Improved corrosion resistance through microstructural modifications induced by codepositing SiC–particles with electrolytic nickel, Corros. Sci., 45, 1173(2003)

8 Y.Zhang, X.Peng, F.Wang, Development and oxidation at 800oC of a novel electrodeposited Ni–Cr nanocomposite  film, Mater. Lett., 58, 1134(2004)

9 L.M.Chang, Z.M.An, Y.S.Shi, Microstructure and characterization of Ni–Co/Al2O3 composite coatings by pulse reversal electrodeposit, Applied Surface Science, 253(4), 2131(2006)

10 L.M.Chang, F.H.Guo, Z. M. An, Effect of Ce(SO4)3 on structure and properties of Ni–Co/Al2O3 composite coating deposited by pulse reverse current method, Applied Surface Science, 253(14), 6085(2007)

11 J.Steinbach, H.Nanostructureed Ni–Al2O3 films prepared by D.C. and pulsed D.C. electroplating, Scripta Mater, 44, 1813(2001)

12 D.Thiemig, A.Bund, B.Jan, Talbot influence of hydrodynamics and pulse plating parameters on the electrodeposition of nickea–alumina nanocomposite films, Electrochimica Acta, 54(9), 2491(2009)

13 B.Andrews, T.Denny, Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and nicke, Surface and Coatings Technology, 201(16–17), 7092(2007)

14 A.B.Vidrine, E.J.Podlaha, Composite electrodeposition of ultrafine γ–alumina particles in Nickel matrices Part I:citrate and chloride electrolytes, Jounral of Applied, 31, 461(2001)

15 F.Erler, C.R.Jakob, H.omanus, Interface behaviors in nickel composite coatings with nano–particles of oxidic ceramic, Electrochemica Acta, 48, 3063(2003)

169 A.Moller, H.Hahn, Synthesis and characterization of nanocrystallin Ni/ZrO2 Composite coatings, Nanostructured Materials, 12, 259(1999)

17 R.Xu, J.Wang, L.He, Study on the characteristics of Ni–W–P composite coatings containing nano–SiO2 and nano–CeO2 particles, Surface and Coatings Technology, 202, 1574(2008)

18 M.E.Bahrololoom, R.Sani, The influence of pulse plating parameters on the hardness and wear resistance of nickel alumina composite coatings, Surface and Coatings Technology,

192(3), 154(2005)

19 F.Wang, S.Arai, M.Endo, Preparation of nickel–carbon nanofiber composites by a pulse–reverse electrodeposition process, Electrochemistry Communications, 7, 674(2005)

20 L.Benea, P.L.Bonora, A.Borello, Wear corrosion properties of nano–structured SiC–nickel composite coatings obtained by electroplating, Wear, 249, 995(2001)

21 ZHANG Yan, PENG Xiao,WANG Fuhui, Effect of Cr particle contents on microstructure of the electrodeposied Ni–Cr nanocomposite, Chinese Journal Materials Research,

23(6), 587(2009)

(张 艳, 彭 晓, 王福会, Cr颗粒含量对Ni--Cr纳米复合镀层组织结构的影响, 材料研究学报,  23(6), 587(2009))

22 ZHANG Yan, TIAN Miaomiao, LI Mo, Electrochemical corrosion of nickel–based alloys with different chromium contents, Chinese Journal Materials Research, 25(6), 645(2011)

(张 艳, 田苗苗, 李 墨, 不同Cr含量的Ni基合金电化学腐蚀行为, 材料研究学报,  25(6), 645(2011))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[6] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[10] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[11] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[12] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[13] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[14] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[15] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
No Suggested Reading articles found!