Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (3): 237-242    DOI:
论文 Current Issue | Archive | Adv Search |
High–temperature Crystallization Behaviors of Amorphous Si–Al–C–N with Low Aluminum Content
LI Song1,2, ZHANG Yue1
1.Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191
2.State Key Laboratory of Advanced Fibre Composites, Beijing Composite Materials Co., Ltd., Beijing 102101
Cite this article: 

LI Song, ZHANG Yue. High–temperature Crystallization Behaviors of Amorphous Si–Al–C–N with Low Aluminum Content. Chin J Mater Res, 2011, 25(3): 237-242.

Download:  PDF(1153KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Amorphous Si–Al–C–N ceramics with varied aluminum contents, which were derived from polyaluminasilazanes at 1200 %, were heat–treated at 1400–1800 %. The structures of precursors and the crystallization behaviors, free–carbon and microstructure of Si–Al–C–N were characterized by Infrared spectrometry, X–ray diffraction, Raman spectra and transmission electron microscopy. The effects of aluminum contents, crystallization temperatures and times on crystallization properties of amorphous Si–Al–C–N were investigated. The results show that amorphous Si–Al–C–N ceramics are amorphous at 1400 %, but include free-carbon. Nano–scale β–Si3N4 and α–Si3N4 nuclei are precipitated at 1500 %. The α–Si3N4 nucleus transforms into β–Si3N4 after treated at 1600 %, at the same time, a minute quantity of α–SiC and 2H–SiC/AlN solid solution nuclei precipitated. At 1700 % a large number of 2H–SiC/AlN solid solution crystals and a few α/β–SiC crystals precipitated besides β–Si3N4, and the β–Si3N4 phase in the Si–Al–C–N ceramic with lowest aluminum content disappears. At 1800 % only β–SiC and 2H–SiC/AlN solid solution crystal are observed. But phase separation takes place at this temperature, leading to the formation of AlN–rich and SiC–rich solid solution region, respectively. With increasing aluminum content, crystallization ability of amorphous Si–Al–C–N ceramics and quantities of grain increase. Nano-scale crystals precipitate from the amorphous Si–Al–C–N at 1500 %, but even until 1800 % the precipitated crystals are still nano–scale crystals. The high-temperature crystallization process of amorphous Si–Al–C–N with high covalence is a process controlled by thermodynamics.
Key words:  inorganic nonmetallic materials      high-temperature crystallization behavior      precursorderived      amorphous      SiAlCN     
Received:  15 February 2011     
ZTFLH: 

TQ174

 
Fund: 

Supported by National Natural Science Foundation of China No.51072010, Specialized Research Fund for the Doctoral Program of Higher Education from Chinese Ministry of Education No. 20091102110002, The Cheung Kong Scholars and Innovative Research Team Program in University from Chinese Ministry of Education No.IRT0805.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I3/237

1 P.Greil, M.Seibold, Modelling of dimensional changes during polymer-ceramic conversion for bulk component fabrication, Journal of Materials Science, 27(9), 1053(1992)

2 Peter Greil, Near net shape manufacturing of polymer derived ceramics, Journal of the European Ceramic Society, 18(13), 1905(1998)

3 G.Ziegler, H.J.kleebe, G.Motz, H.Muller, S.Traβl, W.Weibelzahl, Synthesis, microstructure and properties of SiCN ceramics prepared from tailored polymers, Materials Chemistry and Physics, 61(1), 55(1999)

4 S.R.Shah, R.Raj, Mechanical properties of a fully dense polymer derived ceramic made by a novel pressure casting process, Acta Materialia, 50(16), 4093(2002)

5 S.Sarkar, A.Chunder, W.Fei, L.An, L.Zhai, Superhydrophobic mats of polymer-derived ceramic fibers, Journal of the American Ceramic Society, 91(8), 2751(2008)

6 L.An, Y.Wang, L.Bharadwaj, L.Zhang, Y.Fan, D.Jiang, Y.Sohn, V.H.Desai, J.Kapat, L.C.Chow, Silicoaluminum carbonitride with anomalously high resistance to oxidation and hot corrosion, Advanced Engineering Materials, 5(6), 337(2004)

7 Y.Wang, L.An, Oxidation of polymer-derived SiAlCN ceramics, Journal of the American Ceramic Society, 88(11), 3075(2005)

8 Y.Wang, W.Fei, L.An, Oxidation/corrosion of polymerderived SiAlCN ceramics in water vapor, Journal of the American Ceramic Society, 89(3), 1079(2006)

9 Y.Wang, Y.Fan, L.Zhang, W.Zhang, L.An, Polymer– derived SiAlCN ceramics resist oxidation at 1400oC, Scripta Materialia, 55(4), 295(2006)

10 K.J.L.Paciorek, J.H.Nakahara, L.A.Hoferkamp, C.George, J.L.Flippen-Anderson, R.Gilardi, W.R.Schmidt, Reaction of tris[bis(trimethylsilyl)amino]aluminum with ammonia and pyrolysis studies, Chemistry of Materials, 3(1), 82(1991)

11 G.Verdecia, K.L.O’Brien, W.R.Schmidt, T.M.Apple, Aluminum–27 and silicon–29 solid–state nuclear magnetic resonance study of silicon carbide/aluminum nitride systems: effect of silicon/aluminum ratio and pyrolysis temperature, Chemistry of Materials, 10(4), 1003(1998)

12 H.Nakashima, S.Koyama, K.Kuroda, Y.Sugahara, Conversion of a precursor derived from cage-type and cyclic molecular building blocks into Al–Si–N–C ceramic composites, Journal of the American Ceramic Society, 85(1), 59(2002)

13 R.Toyoda, S.Kitaoka, Y.Sugahara, Modification of perhydropolysilazane with aluminum hydride: preparation of poly(aluminasilazane)s and their conversion into Si-Al-NC ceramics, Journal of the American Ceramic Society, 28(1), 271(2008)

14 F.Berger, M.Weinmann, F.Aldinger, K.M¨uller, Solid-state NMR studies of the preparation of Si-Al-C-N ceramics from aluminum-modified polysilazanes and polysilylcarbodiimides, Chemistry of Materials, 16(5), 919(2004)

15 YANG Nanru, Test Methods of Inorganic Non-metallic Materials (Wuhan, Wuhan University of Technology Press, 2003) p.91

(杨南如,  无机非金属材料测试方法  (武汉, 武汉理工大学出版社, 2003) p.91)

16 Y.Mori, Y.Sugahara, Pyrolytic conversion of an Al–Si–N–C precursor prepared via hydrosilylation between [Me(H)SiNH]4 and [HAlN(allyl)]m[HAlN(ethyl)]n, Applied Organometallic Chemistry, 20(8), 527(2006)

17 A.M¨uller, P.Gerstel, E.Butchereit, K.G.Nickel, F.Aldinger, Si/B/C/N/Al precursor-derived ceramics: synthesis, high temperature behaviour and oxidation resistance, Journal of the European Ceramic Society, 24(12), 3409(2004)

18 W.R.Schmidt, D.M.Narsavage-Heald, D.M.Jones, P.S.Marchetti, D.Raker, G.E.Maciel, Poly(borosilazane) precursors to ceramics nanocomposites, Chemistry of Materials, 11(6), 1455(1999)

19 J.L¨ucke, J.Hacker, D.Suttor, G.Ziegler, Synthesis and characterization of silazane-based polymers as precursors for ceramic matrix composites, Applied Organometallic Chemistry, 11(2), 181(1997)

20 W.Rafaniello, K.Cho, A.V.Virkar, Fabrication and characterization of SiC-AlN alloys, Journal of Materials Science, 16(12), 3479(1981)

21 M.Miura, T.Yogo, S.Hirano, Phase separation and toughening of SiC-AlN solid-solution ceramics, Journal of Materials Science, 28(14), 3859(1993)
[1] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[2] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[3] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[4] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[5] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[6] WANG Peng, LU Xilong, CAO Chun-e, CHEN Yunxia, SHEN Huarong, ZHANG Xu. Influence of Nucleation-growth Liquid-liquid Phase Partition on Properties of Lead-free Low Temperature Frit[J]. 材料研究学报, 2021, 35(9): 657-666.
[7] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[8] ZHANG Zeling, WANG Shiqi, XU Bangli, ZHAO Yuhao, ZHANG Xuhai, FANG Feng. Electrocatalytic Oxygen Evolution Performance of High Entropy FeCoNiMoCr Alloy Thin Film Electrode[J]. 材料研究学报, 2021, 35(3): 193-200.
[9] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[10] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[11] GU Wei, ZHANG Zhijian, YANG Jiaquan. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores[J]. 材料研究学报, 2020, 34(4): 291-298.
[12] SHI Jialun, SHENG Minqi, WU Qiong, LV Fan. Preparation of Electrode Materials of Amorphous Co-W-B/Carbon Cloth Composite and their Electro-catalytic Performance for Electrolysis of Water[J]. 材料研究学报, 2020, 34(4): 263-271.
[13] YIN Cunhong, LI Shaobo, LIANG Yilong. Energy Analysis and Corresponding Model of Friction Strain-induced Solid State Amorphization of Lath Martensite[J]. 材料研究学报, 2020, 34(4): 254-262.
[14] ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. 材料研究学报, 2020, 34(3): 191-197.
[15] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
No Suggested Reading articles found!