Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (3): 233-240    DOI: 10.11901/1005.3093.2024.219
ARTICLES Current Issue | Archive | Adv Search |
Preparation of α-Fe2O3/TiO2 Photocatalytic Material and Its Performance for Phenol Degradation
TANG Chen, ZHANG Yaozong(), WANG Yifan, LIU Chao, ZHAO Derun, DONG Penghao
College of Architectural Engineering, North China University of Science and Technology, Tangshan 063000, China
Cite this article: 

TANG Chen, ZHANG Yaozong, WANG Yifan, LIU Chao, ZHAO Derun, DONG Penghao. Preparation of α-Fe2O3/TiO2 Photocatalytic Material and Its Performance for Phenol Degradation. Chinese Journal of Materials Research, 2025, 39(3): 233-240.

Download:  HTML  PDF(1996KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to solve the problems of low efficiency and high cost of catalyst in the treatment of phenol-containing wastewater by traditional photocatalytic technology, a new composite material of α-Fe2O3/TiO2 was prepared by high temperature calcination. The prepared materials were characterized by X-ray diffractometer and other instruments, and their photocatalytic degradation of phenol was studied under the irradiation of 500W high voltage mercury lamp. The results of XRD and SEM showed that the composite material was successfully prepared, and the nano-α-Fe2O3 was attached to the nano-TiO2 to form a heterostructure. FT-IR and UV-Vis detection showed that the composite material had good photocatalytic performance, its visible light absorption range was obviously widened, and the band gap was narrowed (2.02 eV to 1.81 eV). The specific surface area and pore volume were calculated to be 66.4725 m2/g and 0.3213 m3/g by BET test, which were much higher than that of single catalyst, further indicating that the photocatalytic performance of the composite was better than that of α-Fe2O3. In addition, the factors such as the composite ratio of α-Fe2O3 to TiO2, the dosage of composite material, the concentration of phenol, pH and illumination time were optimized. The results show that the degradation efficiency of phenol can reach 94.79% in case that the test solution with phenol concentration of 20 mg/L and pH = 8, a dosage 0.6 g/L of the composite material with a mass ratio 1∶10 for α-Fe2O3 to TiO2 is adopted under the illumination of high voltage mercury lamp for 120 min. Which is much higher than that of single material.

Key words:  composite      α-Fe2O3/TiO2      photochemical catalysis      phenol     
Received:  21 May 2024     
ZTFLH:  TB331  
Fund: Natural Science Foundation of Hebei Province(E2022209044)
Corresponding Authors:  ZHANG Yaozong, Tel: 13832512531, E-mail: zyaozong@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.219     OR     https://www.cjmr.org/EN/Y2025/V39/I3/233

Fig.1  XRD patterns of FT (5/10/20/30) composites
Fig.2  SEM images of (a) α-Fe2O, (b) TiO2, (c) FT10
Fig.3  FT-IR spectra of α-Fe2O3, TiO2 and composite FT(5/10/20/30)
Fig.4  Visible light absorption curve of FT10 and α-Fe2O3
Fig.5  FT10 nitrogen adsorption-desorption isotherm curve (a) and pore size distribution curve (b)
Fig.6  Degradation diagram of phenol with different composite ratios
Fig.7  Effect of pH values of phenol on degradation
Fig.8  Effect of catalyst dosage on phenol degradation
Fig.9  Degradation effect of phenol concentration
Fig.10  Degradation of phenol by α-Fe2O3/TiO2 compo-site material and first-order kinetic fitting curve (a) degradation effect of composite materials on phenol, (b) first-order kinetic fitting curve
Fig.11  Mechanism of photocatalytic degradation of phenol by FT10
Fig.12  Reusability of FT10 composite material
1 Liu D B. Synthesis and photocatalytic properties of α-Fe2O3 and its composites [D]. Guiyang: Guizhou university, 2020
刘大波. α-Fe2O3及其复合物的合成与光催化性能研究 [D]. 贵阳: 贵州大学, 2020
2 Li J J, You J H, Wang Z W, et al. Application of α-Fe2O3-based heterogeneous photo-Fenton catalyst in wastewater treatment: a review of recent advances [J]. J. Environ. Chem. Eng., 2022, 10: 108329
3 Khan J, Lin S S, Nizeyimana J C, et al. Removal of copper ions from wastewater via adsorption on modified hematite (α-Fe2O3) iron oxide coated sand [J]. J. Cleaner Prod., 2021, 319: 128687
4 Ahmed A, Usman M, Yu B, et al. Sustainable fabrication of hematite (α-Fe2O3) nanoparticles using biomolecules of Punica granatum seed extract for unconventional solar-light-driven photocatalytic remediation of organic dyes [J]. J. Mol. Liq., 2021, 339: 116729
5 Lin Q, Xia S Y, Li S P, et al. Fabrication of Au@α-Fe2O3 particles with an enhanced visible-light photocatalysis activity [J]. Mater. Chem. Phys., 2023, 307: 128173
6 Huang W, Lu X Y, Jia D S, et al. Characterization of structural, optical and photocatalytic properties of yttrium modified hematite (α-Fe2O3) nanocatalyst [J]. Ceram. Int., 2023, 49(15): 25602
7 Tahir M, Fakhar-e-Alam M, Atif M, et al. Investigation of optical, electrical and magnetic properties of hematite α-Fe2O3 nanoparticles via sol-gel and co-precipitation method [J]. J. King Saud Univ. Sci., 2023, 35(5): 102695
8 Badawi A, Alharthi S S, Alotaibi A A, et al. Tailoring the structural and optical characteristics of hematite (α-Fe2O3) nanostructures by barium/aluminum dual doping for eco-friendly applications [J]. Appl. Phys., 2023, 129A(5) : 339
9 Sridevi H, Bhat M R, Kumar P S, et al. Structural characterization of cuboidal α-Fe2O3 nanoparticles synthesized by a facile approach [J]. Appl. Nanosci., 2023, 13: 5605
10 Xiang H L, Ren G K, Yang X S, et al. A low-cost solvent-free method to synthesize α-Fe2O3 nanoparticles with applications to degrade methyl orange in photo-fenton system [J]. Ecotoxicol. Environ. Saf., 2020, 200: 110744
11 Marschall R. Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity [J]. Adv. Funct. Mater., 2014, 24(17): 2421
12 Aquino C L E, Balela M D L. Thermally grown Zn-doped hematite (α-Fe2O3) nanostructures for efficient adsorption of Cr(VI) and Fenton-assisted degradation of methyl orange [J]. SN Appl. Sci., 2020, 2: 2099
13 Lei R, Ni H W, Chen R S, et al. Ag nanowire-modified 1D α-Fe2O3 nanotube arrays for photocatalytic degradation of methylene blue [J]. J. Nanopart. Res., 2017, 19: 378
14 Zhang P, Wang T, Gong J L. Current mechanistic understanding of surface reactions over water-splitting photocatalysts [J]. Chem, 2018, 4(2): 223
15 Yang G L, Jiang Y, Yin B J, et al. Efficiency and mechanism on photocatalytic degradation of fluoranthene in soil by Z-scheme g-C3N4/α-Fe2O3 photocatalyst under simulated sunlight [J]. Environ. Sci. Pollut. Res., 2023, 30: 70260
16 Zhang T, Guo X J, Pei H B, et al. Design and synthesis of α-Fe2O3/MIL-53(Fe) composite as a photo-Fenton catalyst for efficient degradation of tetracycline hydrochloride [J]. Colloids Surf., 2023, 659A: 130822
17 Habibi-Yangjeh A, Feizpoor S, Seifzadeh D, et al. Improving visible-light-induced photocatalytic ability of TiO2 through coupling with Bi3O4Cl and carbon dot nanoparticles [J]. Sep. Purif. Technol., 2020, 238: 116404
18 Spigariol N, Liccardo L, Lushaj E, et al. Titania nanorods array homojunction with sub-stoichiometric TiO2 for enhanced methylene blue photodegradation [J]. Catal. Today, 2023, 419: 114134
19 Qu K J, Huang L, Hu S Y, et al. TiO2 supported on rice straw biochar as an adsorptive and photocatalytic composite for the efficient removal of ciprofloxacin in aqueous matrices [J]. J. Environ. Chem. Eng., 2023, 11(2): 109430
20 Robertson J, Xiong K, Clark S J. Band structure of functional oxides by screened exchange and the weighted density approximation [J]. Phys. Status Solidi (b), 2006, 243(9): 2054
21 Wang Q, Yang G. Unraveling the photocatalytic mechanisms for U(VI) reduction by TiO2 [J]. Mol. Catal., 2022, 533: 112770
22 Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP [J]. Z. für Kristallogr.-Cryst. Mater., 2005, 220(5-6): 567
23 Mammar R B, Hamadou L. Highly broadband plasmonic Pt nanoparticles modified α-Fe2O3/TiO2 nanotubes for efficient photoelectrochemical water splitting [J]. Opt. Mater., 2023, 143: 114191
24 Kavitha S, Ranjith R, Jayamani N, et al. Fabrication of visible-light-responsive TiO2/α-Fe2O3-heterostructured composite for rapid photo-oxidation of organic pollutants in water [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 8906
25 Rasouli K, Alamdari A, Sabbaghi S. Ultrasonic-assisted synthesis of α-Fe2O3@TiO2 photocatalyst: Optimization of effective factors in the fabrication of photocatalyst and removal of non-biodegradable cefixime via response surface methodology-central composite design [J]. Sep. Purif. Technol., 2023, 307: 122799
26 Wang Y, Du M H, Zhang N, et al. Degradation effect and mechanism of phenol wastewater by α-Fe2O3 catalytic ozone oxidation [J]. Res. Environ. Sci., 2022, 35(8): 1818
王 勇, 杜明辉, 张 宁 等. α-Fe2O3催化臭氧氧化处理苯酚废水的效果及机理 [J]. 环境科学研究, 2022, 35(8): 1818
27 Zhang J L, Wei J, Ren Y Z, et al. Degradation characteristics and kinetics of penicillin G in water by ozone oxidation [J]. Res. Environ. Sci., 2019, 32(7): 1231
张佳丽, 魏 健, 任越中 等. 臭氧氧化降解水中青霉素G特性和动力学特征 [J]. 环境科学研究, 2019, 32(7): 1231
28 Al Ghafry S S A, Al Shidhani H, Al Farsi B, et al. The photocatalytic degradation of phenol under solar irradiation using microwave-assisted Ag-doped ZnO nanostructures [J]. Opt. Mater., 2023, 135: 113272
29 Zenou V Y, Bakardjieva S. Microstructural analysis of undoped and moderately Sc-doped TiO2 anatase nanoparticles using Scherrer equation and Debye function analysis [J]. Mater. Charact., 2018, 144: 287
30 Apte S K, Naik S D, Sonawane R S, et al. Synthesis of nanosize‐necked structure α‐and γ‐Fe2O3 and its photocatalytic activity [J]. J. Am. Ceram. Soc., 2007, 90(2): 412
31 De La Osa R A, Iparragirre I, Ortiz D, et al. The extended Kubelka-Munk theory and its application to spectroscopy [J]. ChemTexts, 2020, 6: 2
32 Han S C, Hu L F, Liang Z Q, et al. One‐step hydrothermal synthesis of 2D hexagonal nanoplates of α‐Fe2O3/graphene composites with enhanced photocatalytic activity [J]. Adv. Funct. Mater., 2014, 24(36): 5719
33 Zhang S W, Li J X, Niu H H, et al. Visible‐light photocatalytic degradation of methylene blue using SnO2/α‐Fe2O3 hierarchical nanoheterostructures [J]. ChemPlusChem, 2013, 78(2): 192
34 Liu X N, Lu Q F, Zhu C F, et al. Enhanced photocatalytic activity of α-Fe2O3/Bi2WO6 heterostructured nanofibers prepared by electrospinning technique [J]. RSC Adv., 2015, 5(6): 4077
35 Merkulov D Š, Lazarevic M, Djordjevic A, et al. Potential of TiO2 with various Au nanoparticles for catalyzing mesotrione removal from wastewaters under sunlight [J]. Nanomaterials, 2020, 10(8): 1591
36 Duan A P, Hou X S, Yang M, et al. EDTA-2Na assisted facile synthesis of monoclinic bismuth vanadate (m-BiVO4) and m-BiVO4/rGO as a highly efficient visible-light-driven photocatalyst [J]. Mater. Lett., 2022, 311: 131498
37 Liang Q W, Chen X, Liu R N, et al. Efficient removal of Cr(VI) by a 3D Z-scheme TiO2-Zn x Cd1 - x S graphene aerogel via synergy of adsorption and photocatalysis under visible light [J]. J. Environ. Sci., 2023, 124: 360
[1] . Preparation and Properties of High Performance Silane Conversion Film on Electroplated Zinc Surface[J]. 材料研究学报, 2025, (4): 0-0.
[2] . Enhanced Electromagnetic Shielding Performance of MXene@Carbon Fiber Felt Composite Films[J]. 材料研究学报, 2025, (4): 0-0.
[3] YU Wenjing, LIU Chunzhong, ZHANG Hongliang, LU Tianni, WANG Dong, LI Na, HUANG Zhenwei. Effect of SiC Content on Microstructure and Corrosion Resistance of Micro-arc Oxidation Film on Composites SiCP/6092 Al-alloy[J]. 材料研究学报, 2025, 39(2): 153-160.
[4] BAO Xiukun, SHI Guimei. Preparation and Microwave Absorption Properties of NiCo@C(N)/NC Nanocomposites[J]. 材料研究学报, 2025, 39(2): 126-136.
[5] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
[6] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[7] CUI Sikai, FU Guangyan, LIN Lihai, YAN Yukun, LI Chusen. Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature[J]. 材料研究学报, 2024, 38(9): 659-668.
[8] ZHANG Hengyu, HUANG Zhaodan, DUAN Tigang, WEN Qing, LI Ruocan, WU Houran, MA Li, ZHANG Haibing. Electrocatalytic Oxygen Reduction of Carbon-based Hierarchical Pt@Co Composite Catalytic Cathode in Natural Seawater[J]. 材料研究学报, 2024, 38(8): 632-640.
[9] HUANG Wenzhan, CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method[J]. 材料研究学报, 2024, 38(8): 605-613.
[10] TAN Shangrong, YAO Zhuo, LIU Zechen, JIANG Yilei, GUO Shiqi, LI Lili. Fabrication and Performance of Metal Organic Framework Zn-BTC/rGO Nanocomposites[J]. 材料研究学报, 2024, 38(8): 576-584.
[11] HAO Ziheng, ZHENG Liumenghan, ZHANG Ni, JIANG Entong, WANG Guozheng, YANG Jikai. Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes[J]. 材料研究学报, 2024, 38(8): 569-575.
[12] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[13] ZHOU Hui, DU Bin, YANG Pengbin, JIN Dangqin, XIAO Jiali, SHEN Ming, WANG Shengwen. Sodium Gluconate Assisted Synthesis of Nest-like Bi/β-Bi2O3 Heterojunction and Its Visible-light Driven Photocatalytic Activities[J]. 材料研究学报, 2024, 38(7): 549-560.
[14] LIU Ying, CHEN Ping, ZHOU Xue, SUN Xiaojie, WANG Ruiqi. Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites[J]. 材料研究学报, 2024, 38(6): 453-462.
[15] BIAN Pengbo, HAN Xiuzhu, ZHANG Junfan, ZHU Shize, XIAO Bolv, MA Zongyi. Effect of Aluminum Powder Size and Temperature on Mechanical Properties of Hot Pressed 15%SiC/2009Al Composite[J]. 材料研究学报, 2024, 38(6): 401-409.
No Suggested Reading articles found!