Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (1): 21-34    DOI: 10.11901/1005.3093.2024.146
ARTICLES Current Issue | Archive | Adv Search |
Corrosion Behavior of 1200 MPa Class Carbide-free Bainite Medium Manganese Steel for Offshore Platform
LI Yanyang1, YU Chi1(), ZHAO Wei1, GAO Xiuhua2, DU Linxiu2
1 College of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

LI Yanyang, YU Chi, ZHAO Wei, GAO Xiuhua, DU Linxiu. Corrosion Behavior of 1200 MPa Class Carbide-free Bainite Medium Manganese Steel for Offshore Platform. Chinese Journal of Materials Research, 2025, 39(1): 21-34.

Download:  HTML  PDF(25281KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A series of medium manganese test steels of non-carbide bainite structure were prepared by isothermal quenching heat treatment. The evolution of the inner- and outer-portion of corrosion products on the steels (1200 MPa class) and the effect of the microstructure of corrosion products on its corrosion resistance were studied via periodic immersion accelerated corrosion test in 3.5% NaCl solution and electrochemical corrosion measurement so that to simulate the corrosion situation encountered in the ocean splash zone. The results show that after being heated to 920 oC for 30 min and then quenched quickly in salt bath of 340 oC for 2 h, the steel presents an uniform and fine microstructure with clear lath boundaries, while its yield strength, tensile strength and elongation at breaking are 1297 MPa, 1402 MPa, and 29.3%, respectively. With the increase of corrosion time, the inner portion of corrosion products gradually changed from the loose porous γ-FeOOH in the initial stage to the dense α-FeOOH in the later stage of corrosion. The alloying elements beneficial for enhancing corrosion resistant such as Cr and Cu were enriched in the inner portion of the corrosion products, and stable compounds such as FeCr2O4 and CuFe2O4 were formed. With the increase of pre-corrosion treatment time, the corrosion current density first increases and then decreases, the corrosion potential first shifts negatively and then positively, the charge transfer resistance increases, and the protective effect of the corrosion product film is gradually enhanced. With the increase of the enrichment degree of corrosion resistant elements in the inner portion of corrosion products, the corrosion current density decreases, the charge transfer resistance increases, and the corrosion resistance increases.

Key words:  material failure and protection      ocean platform      carbide-free bainite      medium manganese steel      corrosion products      electrochemical corrosion     
Received:  01 April 2024     
ZTFLH:  TG172.5  
Fund: Higher Educational Science and Technology Program of Hebei Province(ZD2020413)
Corresponding Authors:  YU Chi, Tel: 18932571365, E-mail: yuchi@neuq.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.146     OR     https://www.cjmr.org/EN/Y2025/V39/I1/21

MaterialCSiMnMoCrCuFe
1#0.11.65.00.40.4-Bal.
2#0.11.65.00.40.8-Bal.
3#0.11.65.00.40.40.35Bal.
Table 1  Composition analysis of experimental steels (%, mass fraction)
Fig.1  Temperature-expansion volume curve of the experimental steels
MaterialAc1 / oCAc3 / oCMs / oC
1#663865342
2#640833330
3#630820325
Table 2  Austenitic and martensitic transformation points of experimental steels
MaterialHeat treatmentYield strength / MPaTensile strength / MPaYield ratio / %Elongation / %Hardness (HV5)
1#920 oC - 0.5 h + 340 oC - 2 h1206132790.929.3433.5
2#1233136490.428.2435.5
3#1297140292.529.1437.9
Table 3  Comprehensive mechanical properties of experimental steels
Fig.2  Microstructure morphologies of experimental steels after isothermal quenching at 340 oC for 2 h (a~c) metallographic microstructure of 1#、2#和3# sample; (d~f) SEM microstructure of 1#、2#和3# sample
Fig.3  Corrosion weight loss and Cumulative corrosion rate of experimental steels under different corrosion periods (a) loss of mass due to corrosion; (b) cumulative corrosion rate
Time / hMaterial24 h72 h168 h240 h360 h576 h
Weight / g1#0.79912.11833.95514.66175.12995.377
2#0.71681.81543.56144.41134.88965.2049
3#0.75141.6873.30154.20124.60825.1351
Table 4  Corrosion weight loss of experimental steel under different corrosion cycles
Fig.4  XRD phase analysis of experimental steels corrosion products (a~c) phase of the outer membrane layer in 1#、2# and 3# sample; (d~f) phase of the inner membrane layer in 1#、2# and 3# sample
Fig.5  Macroscopic morphology of corrosion film on experimental steels under different corrosion cycles (a~c) macro morphology after corrosion for 72 h, 360 h and 576 h of 1# sample; (d~f) macro morphology after orrosion for 72 h, 360 h and 576 h of 2# sample; (g~i) macro morphology after orrosion for 72 h、360 h和576 h of 3# sample
Fig. 6  Micro-morphology of corrosion film on experimental steels under different corrosion cycles (a~c) micro morphology after corrosion for 72 h, 360 h and 576 h of 1# sample; (d~f) micro morphology after corrosion for 72 h, 360 h and 576 h of 2# sample; (g~i) micro morphology after corrosion for 72 h, 360 h and 576 h of 3# sample
Fig.7  Microstructure and EDS analysis of experimental steels after 576 h corrosion (a,d) micro morphology of 2# and 3# sample; (b, e) enlarged view of the red rectangular region in the microtopography and element distribution at point 1 of 2# and 3# sample; (c, f) element distribution at point 2 of 2# and 3# sample
Fig.8  Analysis of specific surface area and pore size of experimental steels under different corrosion periods (a) adsorption capacity and porosity of experimental steel 1# after corrosion for 72 h, 360 h and 576 h; (b) adsorption capacity and porosity of experimental steel 2# after corrosion for 72 h, 360 h and 576 h
Fig.9  Corrosion model of medium manganese steel in simulated ocean splash zone (a) 1#; (b) 2#; (c) 3#
Fig.10  Electrochemical Tafel polarization curves of experimental steels under different corrosion periods (a) 1#; (b) 2#; (c) 3#
Time / hMaterial24 h72 h168 h240 h360 h576 h
Ecorr / V1#-0.857-0.884-0.858-0.811-0.764-0.642
2#-0.821-0.863-0.810-0.762-0.652-0.511
3#-0.843-0.758-0.688-0.696-0.604-0.497
icorr / A·cm-21#2.155 × 10-42.326 × 10-41.611 × 10-42.794 × 10-51.794 × 10-51.226 × 10-5
2#2.195 × 10-45.194 × 10-41.792 × 10-42.656 × 10-52.582 × 10-71.370 × 10-7
3#2.959 × 10-52.397 × 10-58.175 × 10-51.669 × 10-53.754 × 10-71.300 × 10-7
Table 5  Tafel parameters corresponding to the polarization curves of experimental steels under different corrosion periods
Time / h2472168240360576
OCP/V1#-0.651-0.675-0.637-0.608-0.577-0.549
2#-0.634-0.662-0.623-0.574-0.539-0.480
3#-0.648-0.622-0.594-0.558-0.518-0.475
Table 6  Open Circuit Potential (OCP) of experimental steels under different corrosion periods
Fig.11  Nyquist diagram and equivalent circuit diagram of experimental steels corrosion products under different corrosion periods (a~c) Nyquist plot of 1#、2#和3# sample; (d) equivalent circuit
MaterialRs / Ω·cm2R1 / Ω·cm2C1 / μF·cm-2Q / Ω-1·cm-2s nRct / Ω·cm2nRw / Ω-1·cm-2·s0.5
1#72 h4.323.646.158 × 10-21.192 × 10-613.760.1920.0211
360 h9.4612.053.622 × 10-22.084 × 10-624.580.3070.0203
576 h13.6915.771.875 × 10-21.841 × 10-647.790.2160.0287
2#72 h10.725.614.437 × 10-21.634 × 10-624.170.1640.0227
360 h16.4718.262.172 × 10-24.530 × 10-645.320.2120.0176
576 h18.2422.930.652 × 10-23.488 × 10-658.310.2790.0341
3#72 h8.836.454.394 × 10-22.124 × 10-623.960.1680.0270
360 h15.3518.791.781 × 10-22.658 × 10-647.510.1970.0255
576 h22.1424.370.957 × 10-21.143 × 10-659.650.2530.0326
Table 7  EIS curve fitting results of three experimental steels with different corrosion time (72~576 h)
Fig.12  Bode diagram of corrosion products of experimental steel under different corrosion periods (a, b) Bode modulus diagram and phase angle diagram of 1# sample; (c, d) Bode modulus diagram and phase angle diagram of 2# sample; (e, f) Bode modulus diagram and phase angle diagram of 3# sample
1 Liu Z Y, Tang S, Chen J, et al. Latest progress on development and production of steels for offshore platform and their development tendency [J]. Angang Technol., 2015, 391(1): 1
刘振宇, 唐 帅, 陈 俊 等. 海洋平台用钢的研发生产现状与发展趋势 [J]. 鞍钢技术, 2015, 391(1): 1
2 Zhou Y, Jia T, Zhang X, et al. Investigation on tempering of granular bainite in an offshore platform steel [J]. Mater. Sci. Eng: A, 2015, 626: 352
3 Hu J, Du L X, Liu H, et al. Structure-mechanical property relationship in a low-C medium-Mn ultrahigh strength heavy plate steel with austenite-martensite submicro-laminate structure [J]. Mater. Sci. Eng.: A, 2015, 647: 144
4 Ye Q, Han G, Xu J, et al. Effect of a two-step annealing process on deformation-induced transformation mechanisms in cold-rolled medium manganese steel [J]. Mater. Sci. Eng.: A, 2022, 831: 142244
5 Zhou Y L, Wang G T, Wang L J, et al. Effect of heat treatment on microstructure and properties of high formability 0.1%C-3%Mn medium manganese steel [J]. Chin. J. Mater. Res, 2022, 36(5): 343
周永浪, 王官涛, 王立军 等. 热处理工艺对高成型性0.1%C-3%Mn中锰钢组织和性能的影响[J]. 材料研究学报, 2022, 36(5): 343
doi: 10.11901/1005.3093.2021.300
6 Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate [J]. Mater. Sci. Eng: A, 2016, 675: 153
7 Lee S, Kang S H, Nam J H, et al. Effect of tempering on the microstructure and tensile properties of a martensitic medium-Mn lightweight steel [J]. Metall. Mater. Trans. A, 2019, 50(24): 2655
8 Adamczyk-Cieślak B, Koralnik M, Kuziak R, et al. Studies of bainitic steel for rail applications based on carbide-free, low-alloy steel [J]. Metall. Mater. Trans. A, 2021, 52(12): 5429
doi: 10.1007/s11661-021-06480-6
9 Kazum O, Bobby Kannan M, Beladi H, et al. Aqueous corrosion performance of nanostructured bainitic steel [J]. Mater. Des., 2014, 54: 67
10 Zhang D, Gao X, Su G, et al. Corrosion behavior of low-C medium-Mn steel in simulated marine immersion and splash zone environment [J]. J. Mater. Eng. Perform, 2017, 26(6): 2599
11 Su G, Gao X. Comparison of medium manganese steel and Q345 steel on corrosion behavior in a 3.5 wt % NaCl solution [J]. Materials, 2017, 10(8): 938
12 Liu W, Zheng M Y, Wang Z L, et al. Influence of alloy element and microstructure on corrosion behavior of medium-Mn steel in a simulated marine splash zone [J]. Iron Steel, 2017, 52(8): 75
刘 伟, 郑梦瑶, 王志磊 等. 成分和组织对中锰钢模拟飞溅区腐蚀行为影响 [J]. 钢铁, 2017, 52(08): 75
13 Su G, Gao X, Huo M, et al. New insights into the corrosion behaviour of medium manganese steel exposed to a NaCl solution spray [J]. Constr. Build. Mater., 2020, 261: 119908
14 Yan X, Yan L, Kang S, et al. Corrosion behavior and electrochemical corrosion of a high manganese steel in simulated marine splash zone [J]. Mater. Res. Express., 2021, 8(12): 126507
15 Tang Y, Li B, Shi H, et al. Simultaneous improvement of corrosion and wear resistance of Fe-Mn-Al-C lightweight steels: The role of Cr/Mo [J]. Mater. Charact., 2023, 205: 113274
16 Zhu J Y, Tan C T, Bao F H, et al. CO2 corrosion behavior of a new type of low Cr alloy steel containing Al in simulated oilfield production fluid [J]. Chin. J. Mater. Res., 2020, 34(6): 443
朱金阳, 谭成通, 暴飞虎 等. 一种新型含Al低Cr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443
doi: 10.11901/1005.3093.2019.489
17 Mondal J, Das K, Das S. Isothermal transformation kinetics, microstructure and mechanical properties of a carbide free bainitic steel [J]. Mater. Charact., 2021, 177: 111166
18 Ling Y, Hu F, Yan H, et al. Phase transformation and plasticity mechanism of 2GPa medium carbon medium manganese nano-bainite steels [J]. Iron Steel, 2022, 57(11): 131
凌 雨, 胡 锋, 严 恒 等. 2GPa中碳中锰纳米贝氏体钢的相变和塑性机理[J]. 钢铁, 2022, 57(11): 131
19 Xu X, Wang Z, Gao G, et al. The effect of microstructure evolution on the ratchetting-fatigue interaction of carbide-free bainite rail steels under different heat-treatment conditions [J]. Int. J. Fatigue, 2022, 160: 106872
20 Liu J P, Li Y Q, Jin J Y, et al. Effect of processing techniques on microstructure and mechanical properties of carbide-free bainitic rail steels [J]. Mater. Today Commun., 2020, 25: 101531
21 Su G. Influence of Mn on the corrosion behaviour of medium manganese steels in a simulated seawater environment [J]. Int. J. Electrochem. Sci., 2016, 10.20964/2016.11.51: 9447
22 Gao X H, Zhang D Z, Su G Q, et al. Seawater corrosion behavior in splash zone of medium manganese steel for offshore platform [J]. J. Northeast. Univ. (Nat. Sci. Ed.), 2017, 38(09): 1234
高秀华, 张大征, 苏冠侨 等. 海洋平台用中锰钢飞溅区海水腐蚀行为[J]. 东北大学学报(自然科学版), 2017, 38(09): 1234
23 Kancharla H, Mandal G K, Singh S S, et al. Effect of prior copper-coating on the microstructural development and corrosion behavior of hot-dip galvanized Mn containing high strength steel sheet [J]. Surf. Coat. Technol., 2022, 437: 128347
24 Ma Y, Li Y, Wang F. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment [J]. Mater. Chem. Phys., 2008, 112(3): 844
25 Alcántara J, Chico B, Díaz I, et al. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel [J]. Corros. Sci., 2015, 97: 74
26 Yan X, Kang S, Xu M, et al. Corrosion product film of a medium-Mn steel exposed to simulated marine splash zone environment [J]. Materials, 2021, 14(19): 5652
27 Zhang D Z. Study on microstructure and corrosion behavior of 690 MPa medium manganese steel for offshore platform [D]. Shenyang: Northeastern University, 2016
张大征. 海洋平台用690 MPa级中锰钢组织性能及海水腐蚀行为研究 [D]. 沈阳: 东北大学, 2016
28 de la Fuente D, Alcántara J, Chico B, et al. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques [J]. Corros. Sci., 2016, 110: 253
29 Yang J, Lu Y, Guo Z, et al. Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2018, 130: 64
30 Yue L, Meng Y, Han J, et al. Pitting corrosion behavior of Cu-P-RE weathering steels [J]. J. Rare Earths, 2023, 41(2): 321
31 Hofer C, Leitner H, Winkelhofer F, et al. Structural characterization of “carbide-free” bainite in a Fe-0.2C-1.5Si-2.5Mn steel [J]. Mater. Charact., 2015, 102: 85
32 Lin W L, Deng X T, Wang Q, et al. Effect of Tin on corrosion behavior of low alloy high strength steel in Marine environment [J]. Iron Steel, 2023, 58(07): 113
林文丽, 邓想涛, 王 麒 等. 锡对低合金高强钢海洋环境中腐蚀行为的影响[J]. 钢铁, 2023, 58(07): 113
33 Yu P, Song Y, Jin X, et al. Study on the efficiency of manganese oxide-bearing manganese sand for removing Mn2+ from aqueous solution [J]. Microporous Mesoporous Mater., 2024, 364: 112859
34 Kishore K, Chandan A K, Purty M, et al. Effect of microstructure on corrosion behavior of medium manganese steel [J]. Mater. Lett., 2023, 330: 133344
35 Khan A A, Razin A A, S-S Ahammed D, et al. Comparison of electrochemical corrosion performance of eutectic Al-Si automotive alloy in deep seawater and 3.5% NaCl solution [J]. Mater. Today Proc., 2023, 82: 241
36 Yang L Y, Tan Z W, Li T Y, et al. Study on dynamic erosion corrosion behavior of pipeline defect area using WBE and EIS testing techniques [J]. Chin. J. Mater. Res., 2022, 36(5): 381
杨留洋, 谭卓伟, 李同跃 等. 利用WBE及EIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381
doi: 10.11901/1005.3093.2021.134
37 Hajšman J, Kučerová L, Burdová K. The influence of varying aluminium and manganese content on the corrosion resistance and mechanical properties of high strength steels [J]. Metals, 2021, 11(9): 1446
38 Wang D, Zhong Q, Yang J, et al. Effects of Cr and Ni on the microstructure and corrosion resistance of high-strength low alloy steel [J]. J. Mater. Res. Technol., 2023, 23: 36
39 Kityk A, Hnatko M, Pavlik V, et al. Electrochemical surface treatment of manganese stainless steel using several types of deep eutectic solvents [J]. Mater. Res. Bull., 2021, 141: 111348
40 Zhang T, Liu W, Khan H I, et al. Effects of Cu on the corrosion resistance of heat-treated weathering steel in a marine environment [J]. Mater. Today Phys., 2023, 36: 101160
[1] XU Long, LI Jiwen, CUI Chuanyu, LU Qi, YANG Hao, ZHAO Congcong. Corrosion Behavior of Cold Sprayed Zn15Al Alloy Coating on Q235 Carbon Steel in NaCl Aqueous Solution[J]. 材料研究学报, 2024, 38(3): 208-220.
[2] XU Congmin, ZHANG Jinrui, ZHU Wensheng, YANG Xing, YAO Pan, LI Xueli. Effect of D-amino Acids on Corrosion Behavior of Different Steels due to Mixed Bacteria[J]. 材料研究学报, 2023, 37(12): 924-932.
[3] ZHOU Yonglang, WANG Guantao, WANG Lijun, LIU Chunming. Effect of Heat Treatment Process on Microstructure and Properties of a 0.1%C-3% Mn Medium Manganese Steel of High-formability[J]. 材料研究学报, 2022, 36(5): 343-352.
[4] WANG Gen, LI Xinmei, LU Caibin, WANG Songchen, CHAI Cheng. Preparation and Properties of CoCuFeNiTi High Entropy Alloy Coating[J]. 材料研究学报, 2021, 35(8): 561-571.
[5] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[6] GUO Tieming, XU Xiujie, ZHANG Yanwen, SONG Zhitao, DONG Zhilin, JIN Yuhua. Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt[J]. 材料研究学报, 2020, 34(6): 434-442.
[7] DUAN Tigang, HUANG Guosheng, MA Li, PENG Wenshan, ZHANG Wei, XU Likun, LIN Zhifeng, HE Hua, BI Tieman. Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel[J]. 材料研究学报, 2020, 34(10): 777-783.
[8] XU Long,LIU Fuchun,HAN En-Hou. Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating[J]. 材料研究学报, 2019, 33(10): 776-784.
[9] Dalei ZHANG, Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN. Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment[J]. 材料研究学报, 2018, 32(7): 533-540.
[10] Luhai ZHOU, Xicheng WEI, Chunyan WANG, Jun LU, Wurong WANG. Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel[J]. 材料研究学报, 2017, 31(11): 833-838.
[11] Yueling GUO,En-Hou HAN,Jianqiu WANG. Short-term Oxidation Behavior of Domestic Forged and Solution Annealed 316LN Stainless Steel in High Temperature Pressurized Water[J]. 材料研究学报, 2015, 29(6): 401-409.
[12] DING Rui, LI Xiangbo, WANG Jia, XU Likun. Electrochemical Activities of Cold Spray Cu-Cu2O Coating in Seawater[J]. 材料研究学报, 2013, 27(2): 212-218.
[13] JIA Zhijun DU Cuiwei LIU Zhiyong GAO Jin LI Xiaogang. Effect of pH on the Corrosion and Electrochemical Behavior of 3Cr Steel in CO2 Saturated NaCl Solution[J]. 材料研究学报, 2011, 25(1): 39-44.
[14] GU Xunlei SHAN Yuqiao LIU Changsheng YU Xiaozhong. Research of magnetron sputtered Al–Mg alloy coatings on high-speed electro-galvanizing steel[J]. 材料研究学报, 2009, 23(5): 529-533.
No Suggested Reading articles found!