|
|
Electron Microscopy Study of Stacking Defects in β-In2Se3 |
WANG Qiang1, ZHU Heyu2,3, LIU Zhibo2,3( ), ZHU Yi2,3, LIU Peitao2,3, REN Wencai2,3 |
1.School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
WANG Qiang, ZHU Heyu, LIU Zhibo, ZHU Yi, LIU Peitao, REN Wencai. Electron Microscopy Study of Stacking Defects in β-In2Se3. Chinese Journal of Materials Research, 2024, 38(5): 330-336.
|
Abstract In2Se3 has recently received much attention because of its excellent ferroelectric, thermoelectric, and photoelectric properties. However, the stacking defects, known as an important factor affecting the properties of van der Waals layered materials, have not yet been explored for In2Se3. Herein, the atomic configurations of stacking defects in van der Waals layered β-In2Se3 were studied by means of aberration-corrected scanning transmission electron microscopy combined with first-principles calculations. There are a significant amount of replacement-type stacking faults (RSFs) and slip-type stacking faults (SSFs) in 2H β-In2Se3. Moreover, the 1T phase slip-type stacking fault (tSSF), which is thermodynamically prone to spontaneous formation, was observed in 2H β-In2Se3. However, only the SSF was observed as a high energy configuration in 3R β-In2Se3. The phase separation occurred between 2H and 3R β-In2Se3 with a coherent stacking interface. In addition, nine potential stacking fault configurations of β-In2Se3 were constructed, the corresponding stacking fault energies were calculated, and the causes of stacking faults were analyzed from an energetic perspective. Finally, the need for a classification term describing the stacking faults in van der Waals-like layered materials is pointed out.
|
Received: 15 May 2023
|
|
Fund: National Natural Science Foundation of China(52272050);Youth Innovation Promotion Association CAS(2021000185);Young Talents Project of Shenyang National Laboratory for Materials Science(2019000191) |
Corresponding Authors:
LIU Zhibo, Tel: 18809896512, E-mail: zbliu@imr.ac.cn
|
1 |
Chen Y, Lai Z, Zhang X, et al. Phase engineering of nanomaterials[J]. Nat. Rev. Chem., 2020, 4(5): 243
doi: 10.1038/s41570-020-0173-4
pmid: 37127983
|
2 |
Latil S, Henrard L. Charge carriers in few-layer graphene films[J]. Phys. Rev. Lett., 2006, 97(3): 036803
|
3 |
Banerjee A, Bridges C A, Yan J Q, et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet[J]. Nat. Mater., 2016, 15(7): 733
doi: 10.1038/nmat4604
pmid: 27043779
|
4 |
Craciun M F, Russo S, Yamamoto M, et al. Trilayer graphene is a semimetal with a gate-tunable band overlap[J]. Nat. Nanotechnol., 2009, 4(6): 383
doi: 10.1038/nnano.2009.89
pmid: 19498401
|
5 |
Bao W, Jing L, Velasco J, et al. Stacking-dependent band gap and quantum transport in trilayer graphene[J]. Nat. Phys., 2011, 7(12): 948
|
6 |
Zhang X, Nan H, Xiao S, et al. Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy[J]. Nat. Commun., 2019, 10(1): 598
doi: 10.1038/s41467-019-08468-8
pmid: 30723204
|
7 |
Lei S Y, Wang H, Huang L, et al. Stacking fault enriching the electronic and transport properties of few-layer phosphorenes and black phosphorus[J]. Nano Lett., 2016, 16(2): 1317
doi: 10.1021/acs.nanolett.5b04719
pmid: 26799596
|
8 |
Sutter E, Komsa H P, Puretzky A A, et al. Stacking fault induced symmetry breaking in van der waalss nanowires[J]. ACS Nano, 2022, 16(12): 21199
doi: 10.1021/acsnano.2c09172
pmid: 36413759
|
9 |
Klein D R, Macneill D, Song Q, et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet[J]. Nat. Phys., 2019, 15(12): 1255
|
10 |
Li J, Li H, Niu X, et al. Low-dimensional In2Se3 compounds: from material preparations to device applications[J]. ACS Nano, 2021, 15(12): 18683
|
11 |
Dong J Y. Controllable growth and characterization of polymorphic layered In2Se3 and its heterostructure[D]. Qinhuangdao: Yanshan University, 2021
|
|
董继宇. 多晶型层状In2Se3及其异质结的可控制备和表征[D]. 秦皇岛: 燕山大学, 2021
|
12 |
Lv B, Yan Z, Xue W, et al. Layer-dependent ferroelectricity in 2H-stacked few-layer alpha-In2Se3[J]. Mater. Horiz., 2021, 8(5): 1472
|
13 |
Xiao J, Zhu H, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with dipole locking[J]. Phys. Rev. Lett., 2018, 120(22): 227601
|
14 |
Cui C, Hu W J, Yan X, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3[J]. Nano Lett., 2018, 18(2): 1253
|
15 |
Ding W, Zhu J, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waalss materials[J]. Nat. Commun., 2017, 8: 14956
|
16 |
Wang Z, Li Y, Zeng H L, et al. Research progress of two-dimensional ferroelectric material of In2Se3 [J]. J. Xiangtan Univ (Nat. Sci. Ed.)., 2019, 41(05): 40
|
|
王 喆, 李 悦, 曾华凌 等. 二维铁电材料In2Se3的研究进展[J]. 湘潭大学学报(自然科学版), 2019, 41(05): 40
|
17 |
Xue F, Zhang J, Hu W, et al. Multidirection piezoelectricity in mono- and multilayered hexagonal alpha-In2Se3[J]. ACS Nano, 2018, 12(5): 4976
|
18 |
Jiang J, Zhang L, Ming C, et al. Giant pyroelectricity in nanomembranes[J]. Nature, 2022, 607(7919): 480
|
19 |
Mech R K, Mohta N, Chatterjee A, et al. High responsivity and photovoltaic effect based on vertical transport in multilayer α‐In2Se3[J]. Phys. Status Solidi (A), 2020, 217(5): 1900932
|
20 |
Wan S, Li Y, Li W, et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3[J]. Adv. Funct. Mater., 2019, 29(20): 1902332
|
21 |
Si M, Saha A K, Gao S, et al. A ferroelectric semiconductor field-effect transistor[J]. Nat. Electron., 2019, 2(12): 580
|
22 |
Si M, Zhang Z, Chang S C, et al. Asymmetric metal/alpha-In2Se3/Si crossbar ferroelectric semiconductor junction[J]. ACS Nano, 2021, 15(3): 5689
|
23 |
Wang Q, Yang L, Zhou S, et al. Phase-defined van der waals schottky junctions with significantly enhanced thermoelectric properties[J]. J. Phys. Chem. Lett., 2017, 8(13): 2887
doi: 10.1021/acs.jpclett.7b01089
pmid: 28593766
|
24 |
Feng W, Gao F, Hu Y, et al. Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer In2Se3 nanosheets[J]. ACS Appl. Mater. Inter., 2018, 10(33): 27584
|
25 |
Almeida G, Dogan S, Bertoni G, et al. Colloidal monolayer beta-In2Se3 nanosheets with high photoresponsivity[J]. J. Am. Chem. Soc., 2017, 139(8): 3005
|
26 |
Balakrishnan N, Staddon C R, Smith E F, et al. Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport[J]. 2D Mater., 2016, 3(2): 025030
|
27 |
Xu C, Mao J, Guo X, et al. Two-dimensional ferroelasticity in van der waalss beta'-In2Se3[J]. Nat. Commun., 2021, 12(1): 3665
|
28 |
Xu C, Chen Y, Cai X, et al. Two-dimensional antiferroelectricity in nanostripe-ordered In2Se3[J]. Phys. Rev. Lett., 2020, 125(4): 047601
|
29 |
Wang D, Luo F, Lu M, et al. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts[J]. Small, 2019, 15 (40): 1804404
|
30 |
Kresse G and Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996, 6(1): 15
|
31 |
Kresse G and Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J], Phys. Rev. B, 1996, 54(16): 11169
doi: 10.1103/physrevb.54.11169
pmid: 9984901
|
32 |
Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50(24): 17953
doi: 10.1103/physrevb.50.17953
pmid: 9976227
|
33 |
Perdew J P, Burke K and Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
34 |
Grimme S, Ehrlich S and Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. J. Comput. Chem., 2011, 32(7), 1456
doi: 10.1002/jcc.21759
pmid: 21370243
|
35 |
Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J. Chem. Phys., 2010, 132 (15): 154104
|
36 |
Pennycook S J. Z-contrast stem for materials science[J]. Ultramicroscopy, 1989, 30(1): 58
|
37 |
Vítek V. Intrinsic stacking faults in body-centred cubic crystals[J]. Philos. Mag., 1968, 18(154): 773
|
38 |
Hull D and Bacon D J. Introduction to Dislocations (5th ed.)[M]. Oxford: Butterworth-Heinemann, 2011
|
39 |
Edalati K, Horita Z. High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness[J]. Acta Mater., 2011, 59(17): 6831
|
40 |
Hirth J P, Lothe J. Theory of Dislocations[M]. New York: Wiley, 1982
|
41 |
Mio A M, Konze P M, Meledin A, et al. Impact of bonding on the stacking defects in layered chalcogenides[J]. Adv. Funct. Mater., 2019, 29(37): 1902332
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|