Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (5): 330-336    DOI: 10.11901/1005.3093.2023.260
ARTICLES Current Issue | Archive | Adv Search |
Electron Microscopy Study of Stacking Defects in β-In2Se3
WANG Qiang1, ZHU Heyu2,3, LIU Zhibo2,3(), ZHU Yi2,3, LIU Peitao2,3, REN Wencai2,3
1.School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

WANG Qiang, ZHU Heyu, LIU Zhibo, ZHU Yi, LIU Peitao, REN Wencai. Electron Microscopy Study of Stacking Defects in β-In2Se3. Chinese Journal of Materials Research, 2024, 38(5): 330-336.

Download:  HTML  PDF(14693KB)  Mobile PDF(14717KB)
Export:  BibTeX | EndNote (RIS)      
Abstract  

In2Se3 has recently received much attention because of its excellent ferroelectric, thermoelectric, and photoelectric properties. However, the stacking defects, known as an important factor affecting the properties of van der Waals layered materials, have not yet been explored for In2Se3. Herein, the atomic configurations of stacking defects in van der Waals layered β-In2Se3 were studied by means of aberration-corrected scanning transmission electron microscopy combined with first-principles calculations. There are a significant amount of replacement-type stacking faults (RSFs) and slip-type stacking faults (SSFs) in 2H β-In2Se3. Moreover, the 1T phase slip-type stacking fault (tSSF), which is thermodynamically prone to spontaneous formation, was observed in 2H β-In2Se3. However, only the SSF was observed as a high energy configuration in 3R β-In2Se3. The phase separation occurred between 2H and 3R β-In2Se3 with a coherent stacking interface. In addition, nine potential stacking fault configurations of β-In2Se3 were constructed, the corresponding stacking fault energies were calculated, and the causes of stacking faults were analyzed from an energetic perspective. Finally, the need for a classification term describing the stacking faults in van der Waals-like layered materials is pointed out.

Key words:  inorganic nonmetallic materials      stacking fault      β-In2Se3      HAADF-STEM      first-principles calculations     
Received:  15 May 2023     
ZTFLH:  V254.2  
Fund: National Natural Science Foundation of China(52272050);Youth Innovation Promotion Association CAS(2021000185);Young Talents Project of Shenyang National Laboratory for Materials Science(2019000191)
Corresponding Authors:  LIU Zhibo, Tel: 18809896512, E-mail: zbliu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.260     OR     https://www.cjmr.org/EN/Y2024/V38/I5/330

Fig.1  Intrinsic stacking sequence of 2H and 3R β-In2Se3. (a) Atomic-scale HAADF-STEM image of the 2H β-In2Se3 with the stacking sequence of A¯CA¯C viewing at [1¯ 2 1¯ 0] zone axis. (b) Atomic-scale HAADF-STEM image of the 3R β-In2Se3with the stacking sequence of CBAC viewing at [2¯ 1 1 0] zone axis
Fig.2  Stacking fault of 2H β-In2Se3 (a) A low-magnification cross-sectional HAADF-STEM image of the 2H β-In2Se3. The inset is the corresponding FFT patten, (b) Atomic-scale HAADF-STEM image of 2H β-In2Se3 with a RSF indicated by the black dashed line, (c) Atomic-scale HAADF-STEM image of 2H β-In2Se3 with SSFs indicated by the blue dashed lines, (d) Atomic-scale HAADF-STEM image of 2H β-In2Se3 with a high density of RSFs and SSFs. The positions of RSFs and SSFs are denoted by the black and blue dashed lines, respectively, (e) Atomic-scale HAADF-STEM image of 2H β-In2Se3 with a tSSF indicated by the red dashed line
Fig.3  Atomic-scale HAADF-STEM image of the 3R β-In2Se3 with a SSF (tISF) denoted by the blue dashed line
Fig.4  Interface structure of 2H and 3R β-In2Se3 (a) The formation of 3R β-In2Se3 on 2H phase,(b) Atomic-scale HAADF-STEM image of the interface structure between 2H and 3R β-In2Se3
ConfigurationStacking faultc / nmnSFE / mJ·m-2
A¯CA¯CA¯CA¯CA¯CA¯C2H β-In2Se311.057--
A¯CA¯C|CA¯CA¯CA¯|A¯CtISF11.067299.9
A¯CA¯CA¯|B|A¯CA¯CA¯CRSF11.05426.3
A¯CA¯C|B¯AB¯AB¯|CA¯CSSF11.056211.3
A¯CA¯C|B|A¯CA¯C|B|A¯CISF11.0204-13.3
BC¯BC¯BC¯|A¯CA¯CA¯C|tSSF11.0242-28.8
CBACBACBACBA3R β-In2Se310.935--
CBAC|CBAC|CBAC|SSF(tISF)10.9993124.7
CBA|B¯|CBA|B¯|CBA|B¯|rISF10.984641.2
AAAAAAAAAAAA1T β-In2Se311.234--
AAAAAA|B¯|AAAAArISF11.2342-49.2
AAAA|CCCC|BBBB|SSF11.1573-107.5
Table 1  Stacking fault configurations and corresponding SFEs of β-In2Se3
1 Chen Y, Lai Z, Zhang X, et al. Phase engineering of nanomaterials[J]. Nat. Rev. Chem., 2020, 4(5): 243
doi: 10.1038/s41570-020-0173-4 pmid: 37127983
2 Latil S, Henrard L. Charge carriers in few-layer graphene films[J]. Phys. Rev. Lett., 2006, 97(3): 036803
3 Banerjee A, Bridges C A, Yan J Q, et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet[J]. Nat. Mater., 2016, 15(7): 733
doi: 10.1038/nmat4604 pmid: 27043779
4 Craciun M F, Russo S, Yamamoto M, et al. Trilayer graphene is a semimetal with a gate-tunable band overlap[J]. Nat. Nanotechnol., 2009, 4(6): 383
doi: 10.1038/nnano.2009.89 pmid: 19498401
5 Bao W, Jing L, Velasco J, et al. Stacking-dependent band gap and quantum transport in trilayer graphene[J]. Nat. Phys., 2011, 7(12): 948
6 Zhang X, Nan H, Xiao S, et al. Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy[J]. Nat. Commun., 2019, 10(1): 598
doi: 10.1038/s41467-019-08468-8 pmid: 30723204
7 Lei S Y, Wang H, Huang L, et al. Stacking fault enriching the electronic and transport properties of few-layer phosphorenes and black phosphorus[J]. Nano Lett., 2016, 16(2): 1317
doi: 10.1021/acs.nanolett.5b04719 pmid: 26799596
8 Sutter E, Komsa H P, Puretzky A A, et al. Stacking fault induced symmetry breaking in van der waalss nanowires[J]. ACS Nano, 2022, 16(12): 21199
doi: 10.1021/acsnano.2c09172 pmid: 36413759
9 Klein D R, Macneill D, Song Q, et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet[J]. Nat. Phys., 2019, 15(12): 1255
10 Li J, Li H, Niu X, et al. Low-dimensional In2Se3 compounds: from material preparations to device applications[J]. ACS Nano, 2021, 15(12): 18683
11 Dong J Y. Controllable growth and characterization of polymorphic layered In2Se3 and its heterostructure[D]. Qinhuangdao: Yanshan University, 2021
董继宇. 多晶型层状In2Se3及其异质结的可控制备和表征[D]. 秦皇岛: 燕山大学, 2021
12 Lv B, Yan Z, Xue W, et al. Layer-dependent ferroelectricity in 2H-stacked few-layer alpha-In2Se3[J]. Mater. Horiz., 2021, 8(5): 1472
13 Xiao J, Zhu H, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with dipole locking[J]. Phys. Rev. Lett., 2018, 120(22): 227601
14 Cui C, Hu W J, Yan X, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3[J]. Nano Lett., 2018, 18(2): 1253
15 Ding W, Zhu J, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waalss materials[J]. Nat. Commun., 2017, 8: 14956
16 Wang Z, Li Y, Zeng H L, et al. Research progress of two-dimensional ferroelectric material of In2Se3 [J]. J. Xiangtan Univ (Nat. Sci. Ed.)., 2019, 41(05): 40
王 喆, 李 悦, 曾华凌 等. 二维铁电材料In2Se3的研究进展[J]. 湘潭大学学报(自然科学版), 2019, 41(05): 40
17 Xue F, Zhang J, Hu W, et al. Multidirection piezoelectricity in mono- and multilayered hexagonal alpha-In2Se3[J]. ACS Nano, 2018, 12(5): 4976
18 Jiang J, Zhang L, Ming C, et al. Giant pyroelectricity in nanomembranes[J]. Nature, 2022, 607(7919): 480
19 Mech R K, Mohta N, Chatterjee A, et al. High responsivity and photovoltaic effect based on vertical transport in multilayer α‐In2Se3[J]. Phys. Status Solidi (A), 2020, 217(5): 1900932
20 Wan S, Li Y, Li W, et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3[J]. Adv. Funct. Mater., 2019, 29(20): 1902332
21 Si M, Saha A K, Gao S, et al. A ferroelectric semiconductor field-effect transistor[J]. Nat. Electron., 2019, 2(12): 580
22 Si M, Zhang Z, Chang S C, et al. Asymmetric metal/alpha-In2Se3/Si crossbar ferroelectric semiconductor junction[J]. ACS Nano, 2021, 15(3): 5689
23 Wang Q, Yang L, Zhou S, et al. Phase-defined van der waals schottky junctions with significantly enhanced thermoelectric properties[J]. J. Phys. Chem. Lett., 2017, 8(13): 2887
doi: 10.1021/acs.jpclett.7b01089 pmid: 28593766
24 Feng W, Gao F, Hu Y, et al. Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer In2Se3 nanosheets[J]. ACS Appl. Mater. Inter., 2018, 10(33): 27584
25 Almeida G, Dogan S, Bertoni G, et al. Colloidal monolayer beta-In2Se3 nanosheets with high photoresponsivity[J]. J. Am. Chem. Soc., 2017, 139(8): 3005
26 Balakrishnan N, Staddon C R, Smith E F, et al. Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport[J]. 2D Mater., 2016, 3(2): 025030
27 Xu C, Mao J, Guo X, et al. Two-dimensional ferroelasticity in van der waalss beta'-In2Se3[J]. Nat. Commun., 2021, 12(1): 3665
28 Xu C, Chen Y, Cai X, et al. Two-dimensional antiferroelectricity in nanostripe-ordered In2Se3[J]. Phys. Rev. Lett., 2020, 125(4): 047601
29 Wang D, Luo F, Lu M, et al. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts[J]. Small, 2019, 15 (40): 1804404
30 Kresse G and Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996, 6(1): 15
31 Kresse G and Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J], Phys. Rev. B, 1996, 54(16): 11169
doi: 10.1103/physrevb.54.11169 pmid: 9984901
32 Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50(24): 17953
doi: 10.1103/physrevb.50.17953 pmid: 9976227
33 Perdew J P, Burke K and Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
34 Grimme S, Ehrlich S and Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. J. Comput. Chem., 2011, 32(7), 1456
doi: 10.1002/jcc.21759 pmid: 21370243
35 Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J. Chem. Phys., 2010, 132 (15): 154104
36 Pennycook S J. Z-contrast stem for materials science[J]. Ultramicroscopy, 1989, 30(1): 58
37 Vítek V. Intrinsic stacking faults in body-centred cubic crystals[J]. Philos. Mag., 1968, 18(154): 773
38 Hull D and Bacon D J. Introduction to Dislocations (5th ed.)[M]. Oxford: Butterworth-Heinemann, 2011
39 Edalati K, Horita Z. High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness[J]. Acta Mater., 2011, 59(17): 6831
40 Hirth J P, Lothe J. Theory of Dislocations[M]. New York: Wiley, 1982
41 Mio A M, Konze P M, Meledin A, et al. Impact of bonding on the stacking defects in layered chalcogenides[J]. Adv. Funct. Mater., 2019, 29(37): 1902332
[1] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[2] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[3] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[4] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[5] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[6] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[7] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[8] ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. 材料研究学报, 2020, 34(3): 191-197.
[9] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
[10] TANG Yang. Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition[J]. 材料研究学报, 2020, 34(11): 875-880.
[11] Li YANG,Zhiyuan TANG,Tengteng LI,Qiwei DUAN,Jiali HU,Sufang ZHANG,Zhaoqiang ZHENG. Preparation and Photovoltaic Performance of Novel Ruthenium Complex and Its Self-assembly Membrane[J]. 材料研究学报, 2019, 33(8): 614-620.
[12] Yongjie CUI,Yong LIU,Shuai PENG,Keqing HAN,Muhuo YU. Preparation and Property of SiBN Ternary Ceramic Fibers Prepared by Polyborosilazane-Derived Method[J]. 材料研究学报, 2019, 33(2): 155-160.
[13] Hongxia JING, Mingxing GAO, Xingmei WANG, Wangjun PEI, Weizhou JIAO. Preparation and Properties of Ce-doped Cobalt Ferrite[J]. 材料研究学报, 2018, 32(6): 449-454.
[14] Aijun LI, Xiuyun CHUAN, Dubin HUANG, Xi CAO. KOH Activation of Diatomite-templated Carbon and Its Electrochemical Property in Supercapacitor[J]. 材料研究学报, 2017, 31(5): 321-328.
[15] Zhigang YANG,Jianbo YU,Chuanjun LI,Kang DENG,Zhongming REN,Yunbo ZHONG,Qiuliang WANG,Yinming DAI,Hui WANG. Effect of Sintering Conditions on Texture Formation of Si3N4 Ceramic Shaped up in a Strong Magnetic Field[J]. 材料研究学报, 2015, 29(5): 371-376.
No Suggested Reading articles found!