Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (6): 432-442    DOI: 10.11901/1005.3093.2022.209
ARTICLES Current Issue | Archive | Adv Search |
Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC
WANG Wei(), PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe
School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Cite this article: 

WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC. Chinese Journal of Materials Research, 2023, 37(6): 432-442.

Download:  HTML  PDF(20082KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Graphite-based solid lubricating coatings were prepared on Ti-6Al-4V substrate by the slurry method with graphite as solid lubricant, silica as filler, sodium silicate as binder and deionized water as dispersion medium. The tribological properties of the coatings were evaluated by a ball-on-disk friction and wear tester at 500~800℃. The microstructure, chemical composition, elements state and phase constituents of the coatings were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS), respectively. The lubrication mechanism of the coating was also investigated. The results show that the coatings have excellent adhesion, anti-friction and anti-wear properties at 600~700℃. The coatings present the lowest friction coefficient (0.03) and wear rate (0.953×10-4 mm3/(N·m)) at 660℃. At the same time, the co-lubrication of molten sodium silicate and SiO2 in the coating reduces the heat loss of graphite, and the shear viscous component generated on the friction interface reduces the friction and wear. In the process of friction, graphite produces good lubrication performance through interlaminar shear and adsorption gas, SiO2 enhances the bearing capacity of the coating and the bond strength between the coating and the matrix, so that the wear resistance of the coating was improved.

Key words:  metallography      graphite      solid lubricating coating      lubricating properties      wear mechanism     
Received:  14 April 2022     
ZTFLH:  TH117  
Fund: National Natural Science Foundation of China(51975450)
Corresponding Authors:  WANG Wei, Tel: 13609264618, E-mail: gackmol@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.209     OR     https://www.cjmr.org/EN/Y2023/V37/I6/432

ElementsAlVFeTi
Content6.594.770.035Bal.
Table 1  Chemical composition of the Ti-6Al-4V disc (mass fraction, %)
Fig.1  X-ray diffraction (XRD) pattern of graphite bonded solid Lubrication coating after holding at different temperature (a,b), SEM images and element content of the coating at room temperature (c), SEM image and element content of the coating after holding at 700℃ (d)
Fig.2  XPS analysis of the graphite bonded solid lubrication coating (a~e) corresponding XPS spectra of C, O, Si and Na
Fig.3  TG and DSC curves of graphite bonded solid lubrication coating
Fig.4  Coefficient of friction at various temperature (500, 600, 630, 660, 700 and 800℃) conditions (a~f) and wear rate of Si3N4 balls and average friction coefficient (g)
Fig.5  SEM images of the worn surfaces (a) 600℃, (b) 630℃, (c) 660℃, (d) 700℃
Fig.6  SEM and EDS images of Si3N4 ball wear spot under different temperature test conditions (a) 600℃, (b) 630℃, (c) 660℃, (d) 700℃
Temperature600℃630℃660℃700℃
Ti K30.4055.5128.196.94
Al K6.375.107.085.82
O K51.3530.2150.2171.53
Si K4.674.225.295.34
C K7.202.339.2210.38
Table 2  Element content on worn surface of Si3N4 ball under different temperature (mass fraction, %)
Fig.7  Element distribution on the wear surface of the coating after friction test at 660 ℃
Fig.8  Raman spectra of coating (a) and Raman spectra of worn surface of Ti-6Al-4V disc at 660 ℃ (b)
Fig.9  XPS spectrum of worn surface of Ti-6Al-4V disc at 660 ℃ (a~g) corresponding XPS spectra of C, O, Na, Si, Al and Ti
1 Guo P R, Qiu M, Li Y C, et al. Effects of MoS2 on tribology and adhesion properties of polytetrafluoroethylene base bonded solid lubrication coating [J]. Mater. Mech. Eng., 2015, 39(7): 82
郭培锐, 邱 明, 李迎春 等. MoS2对PTFE基粘结固体润滑涂层摩擦学和附着性能的影响 [J]. 机械工程材料, 2015, 39(7): 82
2 Yang K M, Yan H X, Zhang Y B, et al. Properties of boron nitride/hyperbranched polysiloxane-polyimide bonded solid lubricant coating [J]. Tribology, 2021, 42(5): 1053
杨开明, 颜红侠, 张渊博 等. 氮化硼/超支化聚硅氧烷-聚酰亚胺粘结固体润滑涂层的性能 [J]. 摩擦学学报, 2021, 42(5): 1053
3 Li B, Ye Y P, Wan H Q, et al. Preparation and tribology properties of hydrophilic molybdenum disulfide bonded solid lubricating coatings [J]. China Surf. Eng., 2017, 30(4): 142
李 斌, 冶银平, 万宏启 等. 水性二硫化钼基粘结固体润滑涂层制备及其摩擦学性能 [J]. 中国表面工程, 2017, 30(4): 142
4 Liu W B, Chang Q Y, Zhang H, et al. The influence of curing methods on tribological properties of bonded solid lubricant coatings [J]. Aerosp. Control Appl., 2020, 46(4): 64
刘文博, 常秋英, 张 浩 等. 固化方式对粘结固体润滑涂层摩擦学性能的影响 [J]. 空间控制技术与应用, 2020, 46(4): 64
5 Qiao H B, Gu X P, Yang J G, et al. Effects of fillers on friction and wear properties of bonded solid lubricant coatings [J]. Mater. Mech. Eng., 2013, 37(11): 64
乔红斌, 古绪鹏, 杨建国 等. 填料对粘结固体润滑涂层摩擦磨损性能的影响 [J]. 机械工程材料, 2013, 37(11): 64
6 Xu J, Zhou Z R, Zhang C H, et al. An investigation of fretting wear behaviors of bonded solid lubricant coatings [J]. J. Mater. Process. Technol., 2007, 182: 146
doi: 10.1016/j.jmatprotec.2006.07.023
7 Ye Y P, Chen J M, Zhou H D. An investigation of friction and wear performances of bonded molybdenum disulfide solid film lubricants in fretting conditions [J]. Wear, 2009, 266: 859
doi: 10.1016/j.wear.2008.12.012
8 Luo D B, Fridrici V, Kapsa P. Evaluating and predicting durability of bonded solid lubricant coatings under fretting conditions [J]. Tribol. Int., 2011, 44: 1577
doi: 10.1016/j.triboint.2010.10.007
9 Zhu S Y, Cheng J, Qiao Z H, et al. High temperature solid-lubricating materials: a review [J]. Tribol. Int., 2019, 133: 206
doi: 10.1016/j.triboint.2018.12.037
10 Liu H, Guo J H, Xia T D, et al. Research and application status of graphite-based solid lubrication composite coatings [J]. Paint Coat. Ind., 2019, 49(1): 84
刘 鹤, 郭军红, 夏天东 等. 石墨基固体润滑复合涂料的研究与应用现状 [J]. 涂料工业, 2019, 49(1): 84
11 Scharf T W, Prasad S V. Solid lubricants: a review [J]. J. Mater. Sci., 2013, 48: 511
doi: 10.1007/s10853-012-7038-2
12 Savage R H. Graphite lubrication [J]. J. Appl. Phys., 1948, 19: 1
13 Kane J J, Contescu C I, Smith R E, et al. Understanding the reaction of nuclear graphite with molecular oxygen: kinetics, transport, and structural evolution [J]. J. Nucl. Mater., 2017, 493: 343
doi: 10.1016/j.jnucmat.2017.06.001
14 Zhou Y, Wang S Q, Zhao Z Z, et al. Stability of MLG/Fe2O3 nano-particulate Tribo-layer on TC11 Ti-alloy [J]. Chin. J. Mater. Res., 2019, 33: 763
周 银, 王树奇, 赵振江 等. TC11合金表面MLG/Fe2O3纳米颗粒摩擦层的稳定性 [J]. 材料研究学报, 2019, 33: 763
15 Liu C C, Chen L, Zhou J S, et al. Preparation and tribological behaviors of graphite-phosphate solid lubricating coatings [J]. China Surf. Eng., 2013, 26(5): 96
刘灿灿, 陈 磊, 周健松 等. 石墨-磷酸铝铬润滑涂层的制备及其摩擦学性能 [J]. 中国表面工程, 2013, 26(5): 96
16 Jia Y L, Wan H Q, Chen L, et al. Effects of phosphate binder on the lubricity and wear resistance of graphite coating at elevated temperatures [J]. Surf. Coat. Technol., 2017, 315: 490
doi: 10.1016/j.surfcoat.2017.03.013
17 Wang L, Tieu A K, Zhu H T, et al. The effect of expanded graphite with sodium metasilicate as lubricant at high temperature [J]. Carbon, 2020, 159: 345
doi: 10.1016/j.carbon.2019.12.034
18 Huai W J, Zhang C H, Wen S Z. Graphite-based solid lubricant for high-temperature lubrication [J]. Friction, 2021, 9: 1660
doi: 10.1007/s40544-020-0456-2
19 Ravikumar D, Neithalath N. Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH [J]. Cem. Concr. Compos., 2012, 34: 809
doi: 10.1016/j.cemconcomp.2012.03.006
20 Wang L, Tieu A K, Cui S G, et al. Lubrication mechanism of sodium metasilicate at elevated temperatures through tribo-interface observation [J]. Tribol. Int., 2020, 142: 105972
doi: 10.1016/j.triboint.2019.105972
21 Sliney H E. Solid lubricant materials for high temperatures—a review [J]. Tribol. Int., 1982, 15: 303
doi: 10.1016/0301-679X(82)90089-5
22 Li W B, Chen M H, Wang C, et al. Preparation and oxidation behavior of SiO2-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy [J]. Surf. Coat. Technol., 2013, 218: 30
doi: 10.1016/j.surfcoat.2012.12.022
23 Chen G Q, Li N N, Fu X S, et al. Preparation and characterization of a sodium polyacrylate/sodium silicate binder used in oxidation resistant coating for titanium alloy at high temperature [J]. Powder Technol., 2012, 230: 134
doi: 10.1016/j.powtec.2012.07.020
24 Xie W J, Weng L T, Chan C K, et al. Reactions of SO2 and NH3 with epoxy groups on the surface of graphite oxide powder [J]. Phys. Chem. Chem. Phys., 2018, 20: 6431
doi: 10.1039/C8CP00524A
25 Xia W C, Yang J G, Liang C. Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM [J]. Appl. Surf. Sci., 2014, 293: 293
doi: 10.1016/j.apsusc.2013.12.151
26 Zhang Z G, Cao Y J, Ma Z L, et al. Impact of calcium and gypsum on separation of scheelite from fluorite using sodium silicate as depressant [J]. Sep. Purif. Technol., 2019, 215: 249
doi: 10.1016/j.seppur.2019.01.021
27 Li B F, Trueman B F, Rahmanet M S, et al. Understanding the impacts of sodium silicate on water quality and iron oxide particles [J]. Environ. Sci.: Water Res. Technol., 2019, 5: 1360
doi: 10.1039/C9EW00257J
28 Nesbitt H W, Bancroft G M, Henderson G S, et al. Bridging, non-bridging and free (O2-) oxygen in Na2O-SiO2 glasses: an X-ray Photoelectron Spectroscopic (XPS) and Nuclear Magnetic Resonance (NMR) study [J]. J. Non-Cryst. Solids, 2011, 357: 170
doi: 10.1016/j.jnoncrysol.2010.09.031
29 Fan Q, Zhou D L, Yang L, et al. Study on the oxidation resistance and tribological behavior of glass lubricants used in hot extrusion of commercial purity titanium [J]. Colloids Surf., 2018, 559A: 251
30 Pham T S, Tieu A K, Wan S H, et al. Oxidative and frictional behavior of a binary sodium borate-silicate composite in high-temperature lubricant applications [J]. Ind. Eng. Chem. Res., 2020, 59: 2921
doi: 10.1021/acs.iecr.9b05767
31 Gao Q S, Yan H, Qin Y, et al. Self-lubricating wear resistant composite coating Ti-Ni+TiN+MoS2/TiS prepared on Ti-6Al-4V alloy by laser cladding [J]. Chin. J. Mater. Res., 2018, 32: 921
高秋实, 闫 华, 秦 阳 等. 钛合金表面激光熔覆Ti-Ni+TiN+MoS2/TiS自润滑复合涂层 [J]. 材料研究学报, 2018, 32: 921
32 Li R, Wang H, Zhang T G, et al. Microstructure and properties of laser clad Ti2Ni+TiC+Al2O3+Cr x S y composite coating on Ti811 alloy [J]. Chin. J. Mater. Res., 2022, 36: 62
李 蕊, 王 浩, 张天刚 等. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+Cr x S y 复合涂层的组织和性能 [J]. 材料研究学报, 2022, 36: 62
33 Wang Q J, Hou T L, Wang W, et al. Tribological behavior of black phosphorus nanosheets as water-based lubrication additives [J]. Friction, 2022, 10: 374
doi: 10.1007/s40544-020-0465-1
34 Zhang H C, Qi X L. Super low friction characteristics initiated by running-in process in water-based lubricant for Ti-Alloy [J]. Chin. J. Mater. Res., 2021, 35: 349
张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性 [J]. 材料研究学报, 2021, 35: 349
35 Wang L, Tieu A K, Hai G J, et al. Na2CO3 and graphene nanocomposites toward efficient lubrication [J]. Carbon, 2021, 177: 138
doi: 10.1016/j.carbon.2021.02.074
36 Wu J X, Xu H, Zhang J. Raman spectroscopy of graphene [J]. Acta Chim. Sin., 2014, 72: 301
吴娟霞, 徐 华, 张 锦. 拉曼光谱在石墨烯结构表征中的应用 [J]. 化学学报, 2014, 72: 301
doi: 10.6023/A13090936
37 Hao H H, Liu J B, Li K W, et al. Research progress on characterization of graphene structure by Raman spectroscopy [J]. J. Mater. Eng., 2018, 46(5): 1
郝欢欢, 刘晶冰, 李坤威 等. 拉曼光谱表征石墨烯结构的研究进展 [J]. 材料工程, 2018, 46(5): 1
38 Wang W, Zhang G L, Xie G X. Ultralow concentration of graphene oxide nanosheets as oil-based lubricant additives [J]. Appl. Surf. Sci., 2019, 498: 143683
doi: 10.1016/j.apsusc.2019.143683
39 Sampath S, Maydannik P, Ivanova T, et al. Structural and morphological characterization of Al2O3 coated macro-porous silicon by atomic layer deposition [J]. Thin Solid Films, 2016, 616: 628
doi: 10.1016/j.tsf.2016.09.026
40 Sakamoto K, Hayashi F, Sato K, et al. XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3 [J]. Appl. Surf. Sci., 2020, 526: 146729
doi: 10.1016/j.apsusc.2020.146729
41 Kong N, Zhang J M, Zhang J, et al. Chemical- and mechanical-induced lubrication mechanisms during hot rolling of titanium alloys using a mixed graphene-incorporating lubricant [J]. Nanomaterials, 2020, 10: 665
doi: 10.3390/nano10040665
42 Gao S H, Liu M, Pang X J, et al. Fabrication and properties of super-hydrophobic composite coatings [J]. Chin. J. Mater. Res., 2018, 32: 502
doi: 10.11901/1005.3093.2017.391
高硕洪, 刘 敏, 庞晓军 等. 超疏水复合涂层的制备和性能研究 [J]. 材料研究学报, 2018, 32: 502
doi: 10.11901/1005.3093.2017.391
43 Lü B L, Cui Y, Gao X P, et al. Progress of tribological properties, lubrication mechanism and modification research on graphite [J]. Mater. Rev., 2015, 29A(19) : 60
吕柏林, 崔 跃, 高学朋 等. 石墨摩擦学性能、润滑机理及改性的研究进展 [J]. 材料导报, 2015, 29A(19) : 60
44 Han J C, Li Y, Gao P, et al. Friction performance of space machine with MoS2 solid lubrication coating in vacuum environment [J]. J. Mech. Eng., 2017, 53(11): 61
韩建超, 李 云, 高 鹏 等. 空间机构MoS2固体润滑真空摩擦特性研究 [J]. 机械工程学报, 2017, 53(11): 61
doi: 10.3901/JME.2017.11.061
[1] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[2] HU Ruihang, YANG Zhen, LEI Qijun, LI Xinyang, DONG Ziyu, ZHANG Xiaotong, FAN Hongyu, NIU Jinhai. Effect of Helium Ions Irradiation on Stability of Nano-tungsten Whiskers[J]. 材料研究学报, 2022, 36(11): 850-854.
[3] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[4] YANG Dongya, LI Weitao, WANG Honggang, GAO Gui, CHENG Shengsheng, REN Junfang, TIAN Song. Effect of Counterpart Ring Surface Roughness on Wear Process of Bismuth Bronze[J]. 材料研究学报, 2021, 35(10): 732-740.
[5] XUAN Jingfan, FAN Hongyu, BAI Ying, HU Ruihang, LI Xinyang, TAO Wenchen, NI Weiyuan, NIU Jinhai. Etching Behavior of Tungsten under Irradiation of Low Energy and High Flux Hydrogen Ions[J]. 材料研究学报, 2020, 34(9): 659-664.
[6] SHI Yuanji,YU Linhui,YU Zhaopeng,CHENG Gong,WU Xiaochun,TENG Hongchun. High Temperature Stability and Thermal Fatigue Behavior of DM Hot Working Die Steel[J]. 材料研究学报, 2020, 34(2): 125-136.
[7] Jian TU,Lei LIU,Shirun DING,Jianbo LI,Zhiming ZHOU,Anping DONG,Can HUANG. Effect of Degree and Temperature of Pre-deformation on Deformation Mechanism and Subsequent Recrystallization Behavior of High-entropy Alloy CoCrFeMnNi[J]. 材料研究学报, 2019, 33(6): 427-434.
[8] Tuo ZHANG,Lvdan TENG,Qiyu ZANG,Yitao YANG. Friction and Wear Behavior of Niobium Alloyed Medium Chromium Wear-resistant Cast Steel[J]. 材料研究学报, 2019, 33(4): 313-320.
[9] WU Liang,FAN Hongyu,NI Weiyuan,XU Yang,BAO Sen,ZHANG Yuwei,ZHOU Siqian,NIU Jinhai. Self-protection Performance of Nano-fuzz Formed on W-plate Surface Due to He+ Irradiation[J]. 材料研究学报, 2019, 33(11): 809-814.
[10] Yue WU,Jianping LI,Zhong YANG,Yongchun GUO,Zhijun MA,Minxian LIANG,Tong YANG,Dong TAO. Creep Behavior of a High Strength Compacted Graphite Cast Iron[J]. 材料研究学报, 2019, 33(1): 43-52.
[11] Tong LIU, Ruiming SU, Yingdong QU, Junhua YOU, Yanhua BAI, Rongde LI. Effect of Laser Heat Treatment on Microstructure and Mechanical Property of 7075 Al-alloy[J]. 材料研究学报, 2018, 32(4): 263-270.
[12] Shufeng LI, Imai Hisashi, Kondoh Katsuyoshi, Xin ZHANG, Deng PAN, Yabo FU. Precipitation Strengthening of Supersaturated Alloying Elements in Cu40Zn Graphite Brasses Prepared by Powder Metallurgy[J]. 材料研究学报, 2018, 32(11): 843-852.
[13] Zhiling HAO,Hongyu FAN,Jiayu GUO,Tingting HU,Meng LI,Hejing CUI,Bixuan ZHANG. He Plasma Assisted Preparation of Nanostructure Tungsten Materials[J]. 材料研究学报, 2017, 31(6): 415-421.
[14] Zhengjun WANG, Xing ZHOU, Wenqiang XIAO, Jun BIAN, Daiqiang CHEN. Preparation and Properties of Composites PP/Graphite Sheets[J]. 材料研究学报, 2017, 31(4): 291-299.
[15] Xusheng WANG,Guirong YANG,Wenming SONG,Jian LI,Ying MA,Yuan HAO. Microstructure and Wear Resistance of Composite Coatings Ni-Co/WC+G[J]. 材料研究学报, 2017, 31(3): 195-202.
No Suggested Reading articles found!