Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (3): 175-183    DOI: 10.11901/1005.3093.2021.675
ARTICLES Current Issue | Archive | Adv Search |
Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy
MIAO Qi1, ZUO Xiaoqing1(), ZHOU Yun1, WANG Yingwu1,2, GUO Lu1, WANG Tan1, HUANG Bei1
1.School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2.Centre of Advanced Technology, Yunnan Provincial Academy of Science and Technology, Kunming 650051, China
Cite this article: 

MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy. Chinese Journal of Materials Research, 2023, 37(3): 175-183.

Download:  HTML  PDF(11520KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Foam materials of ZL104 alloy and 304 stainless steel fiber/ZL104 alloy composite were prepared by the infiltration casting method, and their pore structure, mechanical performance, sound absorption properties and the relevant mechanisms were investigated. The results show that within the prepared foam materials, there exist interconnected larger pores, and on the wall of which, there are many smaller sub-pores. The formation of such sub-porous structure may be ascribed to the effect of the second moderating salt adopted for the infiltration casting. Moreover, the fibers present in three states in the composite foam: pore wall fiber, perforated fiber, and inter-porous fiber. The typical composite foam with fiber diameter of 0.1 mm and porosity of 77-86%, while the mean diameter of 0.35mm for the main pores. The composite foam has better compression yield strength and sound absorption performance rather that those of the alloy foam with the same porosity. The compression and sound absorption properties of composite foams increased first and then decreased with the increasing porosity and fiber content. It is wealthy noted that among others the compression yield strength reaching the peak value of 2.6 MPa for the foam with porosity of 82% and fiber content of 5%, accordingly, the average sound absorption coefficient reaching the peak value 0.893 for the composite foam with porosity of 82% and fiber content of 8%, respectively. Finite element analysis shows that when being pressed, the pore wall fibers and perforated fibers can transfer and disperse stress, and the energy can be consumed by displacement and deflection of the fibers, thus enhancing the strength of the composite foam. J-A model analysis shows that the fibers protruded into the pores increase the surface roughness and specific surface area of the foam, resulting in an increasing acoustic wave loss of the composite foam, which is the reason for the higher sound absorption property of the composite foam.

Key words:  composites      304 stainless steel fiber/ZL104 composite foam      infiltration casting      sound absorption performance      mechanical performance      porosity     
Received:  07 December 2021     
ZTFLH:  TB331  
Fund: National Natural Science Foundation of China(52261009);National Natural Science Foundation of China(51861020);National Natural Science Foundation of China(51741103);Key Science and Technology Project of Yunnan Province(2019ZE008)
Corresponding Authors:  ZUO Xiaoqing, Tel: 13108899276, E-mail: zxqdzhhm@kmust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.675     OR     https://www.cjmr.org/EN/Y2023/V37/I3/175

SamplePore size/mmPorosity/%Fiber content/volume fraction, %Fiber size/mm2
1#0.35+0.12770
2#0.35+0.12800
3#0.35+0.12820
4#0.35+0.12840
5#0.35+0.12860
6#0.35+0.12778ϕ0.1×5
7#0.35+0.12808ϕ0.1×5
8#0.35+0.12828ϕ0.1×5
9#0.35+0.12848ϕ0.1×5
10#0.35+0.12868ϕ0.1×5
11#0.35+0.12822ϕ0.1×5
12#0.35+0.12825ϕ0.1×5
13#0.35+0.128211ϕ0.1×5
Table 1  Sample parameters of alloy foams and composite foams
Fig.1  Pore ​​structure of ZL104 alloy foam (a) and 304 stainless steel fiber/ZL104 alloy composite foam (b) and fiber in the composite foam (c~f)
Fig.2  Stress-strain curves of alloy foam (a) and composite foams (b) with different porosity
Fig.3  Stress-strain curves of composite foams with different fiber contents
Fig.4  Relationship between sound absorption coeffic-ient and frequency of composite foams with diff-erent porosity (a) composite foam; (b) Compar-ison of 82% porosity alloy foam and composite foam
Fig.5  Relationship between sound absorption coefficient and frequency of composite foam with different fiber contents
Fig.6  Compressive strain of alloy foam (a) and composite foam (b)
Porosity/%7780828486
Alloy foam/MPa(1#~5#)1.901.300.800.700.50
Composite foam/MPa(6#~10#)2.151.501.631.100.70
Table 2  Yield strength of composite foam with different porosity
Sample11#12#8#13#
Fiber content/%25811
Yield strength/MPa0.602.601.630.90
Table 3  Yield strength of composite foams with different fiber contents
Porosity/%7780828486
Alloy foam(1#~5#)--0.810--
Composite foam(6#~10#)0.8290.8700.8930.8880.832
Table 4  Average sound absorption coefficient of composite foam with different porosity
Sample3#11#12#8#13#
Fiber content/%025811
Average sound absorption coefficient0.8100.8820.8840.8930.872
Table 5  Average sound absorption coefficient of composite foam with different fiber contents
Fig.7  Stress of alloy composite foams with fiber content 8% at different positions
PositionABCDEFGH
Stress /×109 Pa9.268.401.984.653.090.7460.6511.31
Table 6  Stress values of composite foam with fiber content of 8% at different locations
Fig.8  Local pore structure of ZL104 alloy foam (a) porosity 82% (b) porosity 86%
1 Bai P, Yang X, Shen X, et al. Sound absorption performance of the acoustic absorber fabricated by compression and microperforation of the porous metal [J]. Materials & Design, 2019, 167: 107637
2 Marx J C, Robbins S J, Grady Z A, et al. Polymer infused composite metal foam as a potential aircraft leading edge material [J]. Applied Surface Science, 2020, 505: 144114
doi: 10.1016/j.apsusc.2019.144114
3 Otaru A J, Morvan H P, Kennedy A R. Modelling and optimisation of sound absorption in replicated microcellular metals [J]. Scripta Materialia, 2018, 150: 152
doi: 10.1016/j.scriptamat.2018.03.022
4 Shen X, Bai P, Chen L, et al. Development of thin sound absorber by parameter optimization of multilayer compressed porous metal with rear cavity [J]. Applied Acoustics, 2020, 159: 107071
doi: 10.1016/j.apacoust.2019.107071
5 Otaru A J, Morvan H P, Kennedy A R. Numerical modelling of the sound absorption spectra for bottleneck dominated porous metallic structures [J]. Applied Acoustics, 2019, 151: 164
doi: 10.1016/j.apacoust.2019.03.014
6 Wang Y, Zuo X, Kong D, et al. A comparative analysis of sound absorption performance of ZL104/aluminum fiber composite foam [J]. J. Mater. Res., 2019, 34(21): 3717
doi: 10.1557/jmr.2019.263
7 Kim S Y, Park S H, Um Y S, et al. Sound absorption properties of Al foam [J]. Materials Science Forum, 2005, 468: 486
8 Haward S J, Odell J A, Li Z, et al. The rheology of polymer solution elastic strands in extensional flow [J]. Rheol. Acta., 2010, 49(7): 781
doi: 10.1007/s00397-010-0453-x
9 Zhai W, Yu X, Song X, et al. Microstructure-based experimental and numerical investigations on the sound absorption property of open-cell metallic foams manufactured by a template replication technique [J]. Materials & Design, 2018, 137: 108
10 Liu P S, Qing H B, Hou H L. Primary investigation on sound absorption performance of highly porous titanium foams [J]. Materials & Design, 2015, 85(Nov.15) : 275
11 Bai P, Shen X, Zhang X, et al. Influences of compression ratios on sound absorption performance of porous nickel-iron alloy [J]. Metals, 2018, 8(7): 539
doi: 10.3390/met8070539
12 Liu P S, Qing H B. A Spherical-pore foamed titanium alloy with high porosity [J]. Chinese Journal of Materials Research, 2015, 29(5): 346
刘培生, 顷淮斌. 一种具有球形孔隙的高孔率泡沫钛合金 [J]. 材料研究学报, 2015, 29(5): 346
13 Jin W, Liu J, Wang Z, et al. Sound absorption characteristics of aluminum foams treated by plasma electrolytic oxidation [J]. Materials (Basel), 2015, 8(11): 7511
doi: 10.3390/ma8115395
14 Navacerrada M A, Fernández P, Díaz C, et al. Thermal and acoustic properties of aluminium foams manufactured by the infiltration process [J]. Applied Acoustics, 2013, 74(4): 496
doi: 10.1016/j.apacoust.2012.10.006
15 Ao Q B, Wang J Z, Tang H P, et al. Sound absorption characteristics and structure optimization of porous metal fibrous materials [J]. Rare Metal Materials and Engineering, 2015, 44(11): 2646
doi: 10.1016/S1875-5372(16)60011-5
16 Perrot C, Chevillotte F, Panneton R. Bottom-up approach for microstructure optimization of sound absorbing materials [J]. J. Acoust. Soc. Am., 2008, 124(2): 940
doi: 10.1121/1.2945115 pmid: 18681586
17 Yang X H, Ren S W, Wang W B, et al. A simplistic unit cell model for sound absorption of cellular foams with fully/semi-open cells [J]. Composites Science and Technology, 2015, 118:276
doi: 10.1016/j.compscitech.2015.09.009
18 Guan D, Wu J H, Jing L. A statistical method for predicting sound absorbing property of porous metal materials by using quartet structure generation set [J]. Journal of Alloys and Compounds, 2015, 626: 29
doi: 10.1016/j.jallcom.2014.11.159
19 Soni B, Biswas S. Effects of cell parameters at low strain rates on the mechanical properties of metallic foams of Al and 7075-T6 alloy processed by pressurized infiltration casting method [J]. J. Mater. Res., 2018, 33(20): 3418
doi: 10.1557/jmr.2018.281
20 Yu X, Lu Z, Zhai W. Enhancing the flow resistance and sound absorption of open-cell metallic foams by creating partially-open windows [J]. Acta Materialia, 2021, 206: 116666
doi: 10.1016/j.actamat.2021.116666
21 Wu J, Cheng H F, Huang X M, et al. Effects of modification and heat treatment on energyabsorption capacities of aluminum alloy foams [J]. Special Casting & Nonferrous Alloys, 2011, 31(4): 373
吴 进, 程和法, 黄笑梅 等. 变质处理及热处理对泡沫铝合金压缩吸能性的影响 [J]. 特种铸造及有色合金, 2011, 31(4): 373
22 Wang H, Zhou X Y, Long B, et al. Sound absorption properties of open-cells aluminum foams prepared by infiltration casting methods [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(4): 1034
王 辉, 周向阳, 龙 波 等. 渗流铸造法制备的开孔泡沫铝的声学性能 [J]. 中国有色金属学报, 2013, 23(4): 1034
23 Liu M, Cheng H F, Huang X M, et al. Preparation of low density open-cell aluminum foam by soluble plaster mould [J]. Special Casting & Nonferrous Alloys, 2010, 30(5): 462
刘 铭, 程和法, 黄笑梅 等. 用可溶石膏型预制块制备低密度开孔泡沫铝 [J]. 特种铸造及有色合金, 2010, 30(5): 462
24 Altınkök N. Investigation of mechanical and machinability properties of Al2O3/SiCp reinforced Al-based composite fabricated by stir cast technique [J]. J. Porous. Mater., 2015, 22(6): 1643
doi: 10.1007/s10934-015-0048-0
25 Guo C, Zou T, Shi C, et al. Compressive properties and energy absorption of aluminum composite foams reinforced by in-situ generated MgAl2O4 whiskers [J]. Materials Science and Engineering: A, 2015, 645: 1
doi: 10.1016/j.msea.2015.07.091
26 Wu J, Li C, Wang D, et al. Damping and sound absorption properties of particle reinforced Al matrix composite foams [J]. Composites Science and Technology, 2003, 63(3-4): 569
doi: 10.1016/S0266-3538(02)00215-4
27 Zhang J, Jie J, Lu Y, et al. Fabrication of carbon fibers reinforced Al-matrix composites in pulsed magnetic field [J]. J. Mater. Res. Technol., 2021, 11: 197
doi: 10.1016/j.jmrt.2020.12.100
28 Mu Y, Yao G, Cao Z, et al. Strain-rate effects on the compressive response of closed-cell copper-coated carbon fiber/aluminum composite foam [J]. Scripta Materialia, 2011, 64(1): 61
doi: 10.1016/j.scriptamat.2010.09.005
29 Huang Y, Ouyang Q, Zhang D, et al. Carbon materials reinforced aluminum composites: a review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27(5): 775
doi: 10.1007/s40195-014-0160-1
30 Singh B B, Balasubramanian M. Processing and properties of copper-coated carbon fibre reinforced aluminium alloy composites [J]. Journal of Materials Processing Technology, 2009, 209(4): 2104
doi: 10.1016/j.jmatprotec.2008.05.002
31 Pan L W, Rao D W, Yang C, et al. Research progress on preparation methods and energy absorption properties of hollow particles/metal matrix syntactic foams [J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1370
潘利文, 饶德旺, 杨 超 等. 空心微珠/金属基复合泡沫制备方法与吸能性能的研究进展 [J]. 复合材料学报, 2020, 37(6): 1370
32 Lee S, Kim G, Kim H, et al. Impact resistance, flexural and tensile properties of amorphous metallic fiber-reinforced cementitious composites according to fiber length [J]. Constr. Build. Mater., 2021, 271: 121872
doi: 10.1016/j.conbuildmat.2020.121872
33 Allard J F, Atalla N. Propagation of Sound in Porous Media: Modelling sound absorbing materials 2nd Ed. [M]. Hoboken: A John Wiley and Sons, 2009: 45
34 Kalauni K, Pawar S J. A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials [J]. J. Porous Mater., 2019, 26(6): 1795
doi: 10.1007/s10934-019-00774-2
[1] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[4] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] ZHANG Guangcheng, YUAN Tianxiang, MA Delin, ZHOU Ping, GUO Chaoqun, ZHOU Yun, ZUO Xiaoqing. Comparision of Structure and Performance for Foamed Stainless Steels 410L and 430L[J]. 材料研究学报, 2021, 35(8): 597-605.
[12] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[13] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[14] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[15] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
No Suggested Reading articles found!