Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (6): 471-480    DOI: 10.11901/1005.3093.2021.366
ARTICLES Current Issue | Archive | Adv Search |
High-temperature Deformation Behavior and Properties of High Nb Containing TiAl Alloy
ZHOU Haitao, HOU Xiangwu, WANG Yanbo, XIAO Lv, YUAN Yong, SUN Jingli()
Shanghai Spaceflight Precision Machinery, Shanghai 201600, China
Cite this article: 

ZHOU Haitao, HOU Xiangwu, WANG Yanbo, XIAO Lv, YUAN Yong, SUN Jingli. High-temperature Deformation Behavior and Properties of High Nb Containing TiAl Alloy. Chinese Journal of Materials Research, 2022, 36(6): 471-480.

Download:  HTML  PDF(17827KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The high-temperature deformation behavior of high Nb containing TiAl alloy during step-by-step hot compression process was studied. Results show that the workability of high Nb containing TiAl alloy was improved after one hot compression deformation due to the increased volume fraction of equiaxed γ grains and α grains, as well as the decreased volume fraction and size of lamellar colony. Accordingly, based on the processing map and microstructure optimization, the optimal rolling process can be acquired as: the rolling process with strain rate lower than 0.5 s-1, deformation strain less than 25% in the early deformation stage and deformation temperature higher than 1150℃ was determined. Correspondingly, a large size of 600 mm×85 mm×3 mm high Nb containing TiAl alloy sheet with good surface quality and defect-free was successfully fabricated by hot pack rolling with 5 passes of large deformation rolling. The microstructure of the as-rolled high Nb containing TiAl alloy presented fine duplex microstructure with mean grain sizes of less than 5 μm. At room temperature, the as-rolled alloy exhibited yield strength, ultimate tensile strength and ductility as 948 MPa, 1084 MPa and 0.94%, respectively. The tensile strength at 800℃ also remained as high as 758 MPa.

Key words:  material synthesis and processing technology      high Nb containing TiAl alloy      high-temperature deformation behavior      sheets      microstructure      mechanical property     
Received:  21 June 2021     
ZTFLH:  TG335.5  
Fund: Shanghai Sailing Program(19YF1420000);Shanghai Rising-Star Program(19QB1402000)
About author:  SUN Jingli, Tel: (021)37842971, E-mail: sunjingli1221@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.366     OR     https://www.cjmr.org/EN/Y2022/V36/I6/471

Fig.1  Tensile specimens for room temperature (a) and high temperature (b) (unit: mm)
Fig.2  Appearance of hot-compressed Ti-44Al-8Nb-0.2W-0.2B-Y alloy samples after deformation of 50%
Fig.3  Appearance of hot-compressed Ti-44Al-8Nb-0.2W-0.2B-Y alloy samples after deformation of 50%, 25% and 25%+33%
Fig.4  True stress-true strain curves of as-forged Ti-44Al-8Nb-0.2W-0.2B-Y alloy after deformation of 50% and 25%+33% at (a) 1050℃, (b) 1150℃ and (c) 1250℃ within a strain rate of 0.1 and 0.5 s-1
Fig.5  Microstructure of as-forged Ti-44Al-8Nb-0.2W-0.2B-Y alloy deformed at 1250℃ with a strain rate of 0.1 s-1under engineering strain of (a) ε=25%, (b) ε=25%+33% and (c) ε=50%
Fig.6  Microstructure of as-forged Ti-44Al-8Nb-0.2W-0.2B-Y alloy after hot deformation under the condition of 1200℃/0.1 s-1/50%. (a) map of phase[18], (b) orientation map inverse pole figure of α2 phase, (c) pole figure of α grain and γ grain in (a) and (d) orientation map of γ phase
Fig.7  Appearance of Ti-44Al-8Nb-0.2W-0.2B-Y alloy sheet with a total reduction of 80%
Fig.8  Appearance of Ti-44Al-8Nb-0.2W-0.2B-Y alloy sheet with a total reduction of 80% (a) low magnification and (b) high magnification
Fig.9  TEM analysis of the as-rolled Ti-44Al-8Nb-0.2W-0.2B-Y alloy: (a) typical microstructure with γ grains and α2/γ lamellar colonies, (b) γ grains with high-density dislocations, (c) α2/γ lamellar structure, (d) diffraction pattern of α2/γ lamellar, (e) γ twins and substructure in γ grain, (f) diffraction pattern of γ twins
Fig. 10  Tensile properties of as-rolled Ti-44Al-8Nb-0.2W-0.2B-Y alloy at room temperture and 800℃ conducted along rolling direction
AlloyConditionRoom temperature800℃
Rm/MPaA/%Rm/MPaA/%
Ti-45Al-(8-9)Nb-(W, B, Y)Forged, DP [27]9122.364859
Rolled, NG [8]6681.55002
Ti-46Al-9Nb [25]Rolled, near γ7542.538078
Ti-43Al-6Nb-1B [28]Forged9750.879040
Forged, FL8601.075532
Ti-44Al-8Nb-(W, B, Y) [24]Forged9300.47407
Ti-45Al-10Nb[26]Extruded, DP10690.78834a5.4
Ti-45Al-7Nb-0.3W[9]Rolled, near γ≈815-≈715-
Ti-44Al-8Nb-0.2W-0.2B-YRolled, DP10840.98758≈58
Table 1  Tensile properties comparison of current Ti-44Al-8Nb-0.2W-0.2B-Y alloy and several typical deformed high Nb containing TiAl alloys[8, 9, 24~28]
1 Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications [J]. Nat. Mater., 2016, 15: 876
doi: 10.1038/nmat4677
2 Niu H Z, Chen X J, Chen Y F, et al. Microstructural stability, phase transformation and mechanical properties of a fully-lamellar microstructure of a Mo-modified high-Nbγ-TiAl alloy [J]. Mat. Sci. Eng., 2020, 784A: 139313
3 Song L, Appel F, Wang L, et al. New insights into high-temperature deformation and phase transformation mechanisms of lamellar structures in high Nb-containing TiAl alloys [J]. Acta. Mater., 2020, 186: 575
doi: 10.1016/j.actamat.2020.01.021
4 Ren G D, Dai C R, Mei W, et al. Formation and temporal evolution of modulated structure in high Nb-containing lamellar γ-TiAl alloy [J]. Acta. Mater., 2019, 165: 215
doi: 10.1016/j.actamat.2018.11.041
5 Li T R, Liu G H, Xu M, et al. High temperature deformation and control of homogeneous microstructure during hot pack rolling of Ti-44Al-5Nb-(Mo, V, B) alloys: the impact on mechanical properties [J]. Mater. Sci. Eng., 2019, 751A: 1
6 Das G, Kestler H, Clemens H, et al. Sheet gamma TiAl: status and opportunities [J]. JOM, 2004, 56(11): 42
7 Loria E A. Gamma titanium aluminides as prospective structural materials [J]. Intermetallics, 2000, 8: 1339
doi: 10.1016/S0966-9795(00)00073-X
8 Shen Z Z, Lin J P, Liang Y F, et al. A novel hot pack rolling of high Nb-TiAl sheet from cast ingot [J]. Intermetallics, 2015, 67: 19
doi: 10.1016/j.intermet.2015.07.009
9 Liu Y, Liang X P, Liu B, et al. Investigations on processing powder metallurgical high-Nb TiAl alloy sheets [J]. Intermetallics, 2014, 55: 80
doi: 10.1016/j.intermet.2014.07.013
10 Shen Z Z. The investigation of manufacturing, microstructure, properties of high Nb-TiAl alloy sheet [D]. Beijing: University of Science and Technology Beijing, 2016: 69
沈正章. 高Nb-TiAl合金板材制备及组织性能研究 [D]. 北京: 北京科技大学, 2016: 69
11 Niu H Z, Kong F T, Xiao S L, et al. Effect of pack rolling on microstructures and tensile properties of as-forged Ti-44Al-6V-3Nb-0.3Y alloy [J]. Intermetallics, 2012, 21: 97
doi: 10.1016/j.intermet.2011.10.003
12 Xu X J, Lin J P, Wang Y L, et al. Deformability and microstructure transformation of pilot ingot of Ti-45Al-(8-9)Nb-(W, B, Y) alloy [J]. Mater. Sci. Eng., 2006, 416A: 98
13 Su Y J, Kong F T, Chen Y Y, et al. Microstructure and mechanical properties of large size Ti-43Al-9V-0.2Y alloy pancake produced by pack-forging [J]. Intermetallics, 2013, 34: 29
doi: 10.1016/j.intermet.2012.11.004
14 Cui N, Kong F T, Wang X P, et al. Microstructural evolution, hot workability, and mechanical properties of Ti-43Al-2Cr-2Mn-0.2Y alloy [J]. Mater. Design, 2016, 89: 1020
15 Liu B, Liu Y, Li Y P, et al. Thermomechanical characterization of β-stabilized Ti-45Al-7Nb-0.4W-0.15B alloy [J]. Intermetallics, 2011, 19: 1184
doi: 10.1016/j.intermet.2011.03.021
16 Wang Y, Liu Y, Yang G Y, et al. Hot deformation behaviors of β phase containing Ti-43Al-4Nb-1.4W-based alloy [J]. Mater. Sci. Eng., 2013, 577A: 210
17 Schwaighofer E, Clemens H, Lindemann J, et al. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy [J]. Mater. Sci. Eng., 2014, 614A: 297
18 Zhou H T, Kong F T, Wang X P, et al. Hot deformation behavior and microstructural evolution of as-forged Ti-44Al-8Nb-(W, B, Y) alloy with nearly lamellar microstructure [J]. Intermetallics, 2017, 81: 62
doi: 10.1016/j.intermet.2017.02.026
19 Zhou H T, Kong F T, Wang X P, et al. High strength in high Nb containing TiAl alloy sheet with fine duplex microstructure produced by hot pack rolling [J]. J. Alloys Compd., 2017, 695: 3495
doi: 10.1016/j.jallcom.2016.12.005
20 Semiatin S L, Seetharaman V. Deformation and microstructure development during hot-pack rolling of a near-gamma titanium aluminide alloy [J]. Metall. Mater. Trans., 1995, 26A: 371
21 Kong F T, Cui N, Chen Y Y, et al. Characterization of hot deformation behavior of as-forged TiAl alloy [J]. Intermetallics, 2014, 55: 66
doi: 10.1016/j.intermet.2014.07.010
22 Zhou H T, Kong F T, Wu K, et al. Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: lamellar colonies evolution and tensile properties [J]. Mater. Design, 2017, 121: 202
23 Zong Y Y, Wen D S, Liu Z Y, et al. γ-Phase transformation, dynamic recrystallization and texture of a forged TiAl-based alloy based on plane strain compression at elevated temperature [J]. Mater. Design, 2016, 91: 321
24 Zhang S Z, Zhang C J, Du Z X, et al. Microstructure and tensile properties of hot fogred high Nb containing TiAl based alloy with initial near lamellar microstructure [J]. Mater. Sci. Eng., 2015, 642A: 16
25 Gerling R, Bartels A, Clemens H, et al. Structural characterization and tensile properties of a high niobium containing gamma TiAl sheet obtained by powder metallurgical processing [J]. Intermetallics, 2004, 12: 275
doi: 10.1016/j.intermet.2003.10.005
26 Appel F, Brossmann U, Christoph U, et al. Recent progress in the development of gamma titanium aluminide alloys [J]. Adv. Eng. Mater., 2000, 2: 699
doi: 10.1002/1527-2648(200011)2:11<699::AID-ADEM699>3.0.CO;2-J
27 Xu X J, Lin J P, Wang Y L, et al. Effect of forging on microstructure and tensile properties of Ti-45Al-(8-9)Nb-(W, B, Y) alloy [J]. J. Alloys Compd., 2006, 414: 175
doi: 10.1016/j.jallcom.2005.03.121
28 Niu H Z, Chen Y Y, Kong F T, et al. Microstructure evolution, hot deformation behavior and mechanical properties of Ti-43Al-6Nb-1B alloy [J]. Intermetallics, 2012, 31: 249
doi: 10.1016/j.intermet.2012.07.016
29 Cao G X, Fu L F, Lin J G, et al. The relationships of microstructure and properties of a fully lamellar TiAl alloy [J]. Intermetallics, 2000, 8: 647
doi: 10.1016/S0966-9795(99)00128-4
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[11] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[12] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[13] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[14] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
[15] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
No Suggested Reading articles found!