Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (10): 793-800    DOI: 10.11901/1005.3093.2021.244
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Immobilized Laccase onto Framework-like Material of Metal-organic Compound and Its Degradation for Catechol
HOU Yutong1, LI Xin1, LI Dawei2, WEI Qufu1()
1.Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
2.College of Textile and Clothing, Nantong University, Nantong 226019, China
Cite this article: 

HOU Yutong, LI Xin, LI Dawei, WEI Qufu. Preparation of Immobilized Laccase onto Framework-like Material of Metal-organic Compound and Its Degradation for Catechol. Chinese Journal of Materials Research, 2022, 36(10): 793-800.

Download:  HTML  PDF(6499KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Laccase (LAC) was immobilized onto a framework-like material of metal-organic compound (ZIF-90) by means of internal encapsulation and surface physical-adsorption, herewith, two composites of LAC@ZIF-90 and LAC-ZIF-90 were prepared respectively. The structure, property, stability and degradation performance for catechol of the free- and immobilized-laccase were comparatively characterized by means of scanning electron microscopy (SEM), laser confocal electron microscopy (CLSM), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR), fluorescence analysis and high performance liquid chromatography (HPLC) etc. The results show that: laccase molecules were fixed on the surface and inside of ZIF-90, and the molecular structure was stable before and after being fixed; the removal rates for catechol by lac-ZIF-90 and LAC@ZIF-90 were 97% and 19.4%, respectively for the solution with proper pH value, whilst by vibrating for 6 h; the lac-ZIF-90 and LAC@ZIF-90 still showed high vitality after repeatedly used for 5 times; it is especially worthy that the removal rate of catechol was higher than 78% even after repeatedly used for 5 times for the lac-ZIF-90.

Key words:  composits      metal organic framework materials      laccase      immobilization      catechol      degradation     
Received:  15 April 2021     
ZTFLH:  TB332  
Fund: Natural Science Foundation of Jiangsu Province(BK20180628);Fundamental Research Funds for the Central Universities(JUSRP51907A);Priority Academic Program Development of Jiangsu Higher Education Institutions([2014]37)
About author:  WEI Qufu, Tel: 13771106262, E-mail: qfwei@jiangnan.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.244     OR     https://www.cjmr.org/EN/Y2022/V36/I10/793

Fig.1  Schematic illustration showing the synthesis of LAC@ZIF-90 and LAC-ZIF-90
Fig.2  SEM images of ZIF-90 (a), LAC@ZIF-90 (b) and LAC-ZIF-90 (c)
Fig.3  CLSM showing the fluorescence, bright field and overlay images of LAC-ZIF-90 (a, b, c) and LAC@ZIF-90 (d, e, f)
Fig.4  XRD spectra of ZIF-90、LAC@ZIF-90 and LAC-ZIF-90
Fig.5  FTIR spectra of ZIF-90、LAC@ZIF-90、LAC-ZIF-90 and free LAC
Fig.6  Fluorescence spectroscopy of ZIF-90、LAC@ZIF-90、LAC-ZIF-90 and free LAC
ParticlesBET Surface area/m2·g-1Langmuir surface area/m2·g-1Pore volume /cm3·g-1Pore size/nm
ZIF-90721.49701104.66000.3384.6218
LAC@ZIF-90525.6278802.79560.2444.4410
LAC-ZIF-90123.4171199.81780.0543.8030
Table 1  Porous characteristic of free LAC,LAC-ZIF-90 and LAC@ZIF-90
Fig.7  Effect of pH on the activity of immobilized laccase
Fig.8  Effect of temperature on the activity of immobilized laccase
Fig.9  Removal of catechol by free laccase、immobilized laccase and ZIF-90
Fig.10  Reusability of immobilized laccase
1 Schweigert N A, Zehnder A J, Eggen R I. Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals [J]. Environmental Microbiology, 2010, 3(2): 81
doi: 10.1046/j.1462-2920.2001.00176.x
2 Kahru A, Maloverjan A, Sillak H, et al. The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry [J]. Environmental Science and Pollution Research, 2002, 9(1): 27
doi: 10.1007/BF02987422
3 Wang P, Chang Y Z, Shi L, et al. Efficient removal mechanism of catechol by Fe2O3 modified montmorillonite [J]. Chemical Progress, 2019, 38(2): 1122
王 鹏, 常亚洲, 石 林 等. Fe2O3改性蒙脱土对邻苯二酚的高效去除机理 [J]. 化工进展, 2019, 38(2): 1122
4 Sun X J, Bai R B, Zhang Y, et al. Laccase-catalyzed oxidative polymerization of phenolic compounds [J]. Applied Biochemistry & Biotechnology, 2013, 171(7): 1673
5 Li X, Lv P F, Yao Y X, et al. A novel single-enzymatic biofuel cell based on highly flexible conductive bacterial cellulose electrode utilizing pollutants as fuel [J]. Chemical Engineering Journal, 2020, 379: 122316
doi: 10.1016/j.cej.2019.122316
6 Jin R, Zhang F L. The structure and catalytic reaction mechanism of laccase [J]. Journal of Chinese Lacquer, 2012, 3(4): 6
靳 蓉, 张飞龙. 漆酶的结构与催化反应机理 [J]. 中国生漆, 2012, 31(4): 6
7 Wang G D, Chen X Y. The properties, functions, catalytic mechanism and applicability of laccase [J]. Chinese Bulletin of Botany, 2003, 20(4): 469
王国栋, 陈晓亚. 漆酶的性质、功能、催化机理和应用 [J]. 植物学通报, 2003, 20(4): 469
8 Chen M, Wang L, Tan T, et al. Radical Mechanism of Laccase-Catalyzed Catechol Ring-Opening [J]. Acta Physico-Chimica Sinica, 2017, 33(3): 620
doi: 10.3866/PKU.WHXB201612011
9 Pang R, Li M Z, Zhang C D. Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: Diffusional limitation investigation [J]. Talanta, 2015, 131: 38
doi: 10.1016/j.talanta.2014.07.045 pmid: 25281070
10 Zhang P. Modified PAN nanofibers immobilized with laccase and catalytic properties [D]. Wuxi: Jiangnan University, 2013
张 平. 改性聚丙烯腈纳米纤维漆酶固定化及催化性能的研究 [D]. 无锡: 江南大学, 2013
11 Feng Y X. Enzyme immobilization based on metal organic frameworks and its catalytic performance [D]. Shijiazhuang: Hebei University of Science and Technology, 2018
冯玉晓. 基于金属有机框架物酶的固定化及催化性能研究 [D]. 石家庄: 河北科技大学, 2018
12 Chen B L, Yang Z X, Zhu Y Q, et al. Zeolitic imidazolate framework materials: recent progress in synthesis and applications [J]. Journal of Materials Chemistry A, 2014, 2(40): 16811
doi: 10.1039/C4TA02984D
13 Liu J W, Chen L F, Cui H, et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis [J]. Chemical Society reviews, 2014, 43(16): 6011
doi: 10.1039/c4cs00094c pmid: 24871268
14 Cui L, Wu J, Li J, et al. Electrochemical Sensor for Lead Cation Sensitized with a DNA Functionalized Porphyrinic Metal-Organic Framework [J]. Analytical Chemistry, 2015, 87(20): 10635
doi: 10.1021/acs.analchem.5b03287 pmid: 26427312
15 Liang K, Ricco R, Doherty C M, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules [J]. Nat Commun, 2015, 6(1): 7240
doi: 10.1038/ncomms8240
16 Ke C X, Fan Y L, Su F, et al. Recent advances in enzyme immobilization [J]. Chinese Journal of Biotechnology, 2018, 34(2): 188
柯彩霞, 范艳利, 苏 枫 等. 酶的固定化技术最新研究进展 [J]. 生物工程学报, 2018, 34(2): 188
17 Shieh F K, Wang S C, Yen C I, et al. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals [J]. Journal of the American Chemical Society, 2015, 137(13): 4276
doi: 10.1021/ja513058h
18 Li X, Li D W, Zhang Y A, et al. Encapsulation of enzyme by metal-organic framework for single-enzymatic biofuel cell-based self-powered biosensor [J]. Nano Energy, 2020, 68: 104308
doi: 10.1016/j.nanoen.2019.104308
19 Gkaniatsou E, Sicard C, Ricoux R, et al. Metal-organic frameworks: a novel host platform for enzymatic catalysis and detection [J]. Materials Horizons, 2017, 4(1): 55
doi: 10.1039/C6MH00312E
20 Hu Y L, Dai L M, Liu D H, et al. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs) [J]. Renewable & Sustainable Energy Reviews, 2018, 91: 793
21 Shieh F K, Wang S C, Leo S Y, et al. Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size [J]. Chemistry - A European Journal, 2013, 19(34): 11139
doi: 10.1002/chem.201301560
22 Li X F, Huang W Q, Tang B, et al. Research advance in synthesis and application of ZIF-90 zeolitic imidazolate frameworks [J]. New Chemical Materials, 2020, 571(4): 18
李旭飞, 黄维秋, 唐 波 等. 沸石咪唑酯骨架材料ZIF-90的合成及应用研究进展 [J]. 化工新型材料, 2020, 571(4): 18
23 Liang W B, Xu H S, Carraro F, et al. Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal-Organic Frameworks [J]. Journal of the American Chemical Society, 2019, 141(6): 2348
doi: 10.1021/jacs.8b10302 pmid: 30636404
24 Zhang W, Wang C, Peng M, et al. ATP-responsive laccase@ZIF-90 as a signal amplification platform to achieve indirect highly sensitive online detection of ATP in rat brain [J]. Chemical communications (Cambridge, England), 2020, 56(47): 6436
doi: 10.1039/D0CC02021D
25 Jose T, Hwang Y, Kim D W, et al. Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether [J]. Catalysis Today, 2015, 245: 61
doi: 10.1016/j.cattod.2014.05.022
26 Xie W, Wan F. Guanidine post-functionalized crystalline ZIF-90 frameworks as a promising recyclable catalyst for the production of biodiesel via soybean oil transesterification [J]. Energy Conversion and Management, 2019, 198: 111922
doi: 10.1016/j.enconman.2019.111922
27 Zhang D, Fan Y, Li G J, et al. Biomimetic synthesis of zeolitic imidazolate frameworks and their application in high performance acetone gas sensors [J]. Sensors and Actuators B-Chemical, 2020, 302: 127187
doi: 10.1016/j.snb.2019.127187
[1] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[2] JIANG Haichao, AN Haodong, YANG Jing, SU Yujin, LI Ze, ZHANG Bin. In-situ Growth of MoS2 on the Surface of Polyquinazoline Conjugated Microporous Polymers and Its Electrocatalysis Hydrogen Performance[J]. 材料研究学报, 2022, 36(12): 900-906.
[3] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[4] LINGHU Changkai, LI Xiaolong, LUO Zhu, YANG Le, XIA Xiaosong. Triphenyl Phosphite Regulates Degradation Behavior and Properties of Polylactic Acid/Ferric Chloride Blend[J]. 材料研究学报, 2021, 35(8): 632-640.
[5] CHENG Ting, DONG Pengyu, GAO Xin, MENG Chengqi, WANG Yan, CHEN Xiaowei, ZHANG Beibei, XI Xinguo. Synthesis and Visible-light-driven Photocatalytic Activity of CsTi2NbO7@N-doped TiO2 Hybrid Core-shell Structure[J]. 材料研究学报, 2021, 35(3): 221-230.
[6] CHEN Feng, ZHOU Yang, CHEN Yannan, LIN Zongling, QIN Fengxiang. Fabrication of Nano-porous Co by Dealloying for Supercapacitor and Azo-dye Degradation[J]. 材料研究学报, 2020, 34(12): 905-914.
[7] LI Hui, PAN Jie, CAO Kaiyuan, LIU Hui, YIN Jie, WANG Yifeng. Preparation of Nano Zinc Oxide/Sodium Alginate Composite Film by Electrodeposition[J]. 材料研究学报, 2020, 34(11): 829-834.
[8] Zishang CHEN,Xiaoping LIANG,Xiaowei FAN,Jun WANG,Anding HUANG,Zhifeng LIU. Fabrication and Photocatalytic Properties of Ce-La-Ag Co-doped TiO2/Basalt Fiber Composite Photocatalyst[J]. 材料研究学报, 2019, 33(7): 515-522.
[9] Shunsheng CHEN,Shaozhen LI,Xiaojing LUO,Guohong WANG. Preparation and Photocatalytic Properties of Direct Z-Scheme Hexagonal/Cubic ZnIn2S4 Composite Catalysts[J]. 材料研究学报, 2019, 33(2): 145-154.
[10] Xie LI, Xiaodong ZHU, Tingting WANG, Hui WANG. Degradation of Formaldehyde Gas by Composites of La-doped Nano ZnO/diatomite[J]. 材料研究学报, 2018, 32(9): 685-690.
[11] Chengbo HU. Hydrophilicity Degradability and Cell Toxicity of Ti-P Polylactide Paterial Synthesized by Titanium (IV) Complex as Catalyst[J]. 材料研究学报, 2014, 28(5): 395-400.
[12] Hao ZHANG,Jiankun WANG,Rui WANG,Yongchun DONG. Synthesis and Physicochemical Characteristics of Acetylated Corn Starch under Microwave Assistance[J]. 材料研究学报, 2014, 28(4): 286-292.
[13] JI Huiling YUAN Hongguan JIANG Nan WANG Jigang. Theoretical Investigation on the Degradation Mechanism of Furan Ring and Restructuring of the Fragmental Units[J]. 材料研究学报, 2012, 26(2): 162-168.
[14] CHEN Yang LONG Renwei CHEN Zhigang LU Jinxia. Preparation, Characterization and Catalytic Oxidation Performance of CeO2 Hollow Microspheres with Controlled Shell Thickness[J]. 材料研究学报, 2010, 24(3): 315-321.
[15] GAO Jiacheng QIAO Liying WANG Yong. Corrosion degradation of surface modified bio–magnesium materials by heat–self–assembled monolayer[J]. 材料研究学报, 2009, 23(2): 153-157.
No Suggested Reading articles found!