Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (6): 418-426    DOI: 10.11901/1005.3093.2015.599
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of SiO2 Based Hexadecanol-Palmitic Acid-Lauric Acid Microencapsulated Phase Change and Humidity Controlling Materials with Fine Particle Size
ZHANG Hao**(), HUANG Xinjie, ZONG Zhifang, LIU Xiuyu
School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243032, China
Cite this article: 

ZHANG Hao, HUANG Xinjie, ZONG Zhifang, LIU Xiuyu. Preparation and Properties of SiO2 Based Hexadecanol-Palmitic Acid-Lauric Acid Microencapsulated Phase Change and Humidity Controlling Materials with Fine Particle Size. Chinese Journal of Materials Research, 2016, 30(6): 418-426.

Download:  HTML  PDF(684KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microcapsules of phase change- and humidity-controlling material were synthesized by sol-gel method with hexadecanol-palmitic acid-lauric acid as core, SiO2 as shell and silaneas coupling agent. Then their performance of humidity controlling and temperature controlling, particle size distribution, composition and structure, surface morphology and thermal properties were characterized by isothermal sorption method, cooling curve measurement, laser particle analyzer (LPSA), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) respectively. The results show that the amount of deionizedwater, absolute alcohol, hexadecanol-palmitic acid-lauric acid and silane coupling agent had great effect on the properties of the prepared phase change- and humidity-controlling materials. The phase change- and humidity-controlling material of good performance as spherical particles with smooth surface, homogeneous size distribution in a range of 1680.60~1735.35 nm and excellent dispersibility may be synthesized by the following optimal processing parameters: the mole ratio of deionized water totetraethyl orthosilicateis 9, the mole ratio of absolute alcohol totetraethyl orthosilicate 5, the mole ratio of hexadecanol-palmitic acid-lauric acid to tetraethyl orthosilicate 0.5, and the mole ratio of silane coupling agent totetraethyl orthosilicate 0.1.

Key words:  composite materials      hexadecanol-palmitic acid-lauric acid      SiO2      phase change and humidity controlling      fine particle size      microencapsulates     
Received:  22 October 2015     
ZTFLH:  TU522.1  
Fund: *Supported by National Natural Science Foundation of China No.51206002
About author:  **To whom correspondence should be addressed, Tel: 18755512282, E-mail: fengxu19821018@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.599     OR     https://www.cjmr.org/EN/Y2016/V30/I6/418

Sample Mole ratio between deionizedwater and tetraethyl orthosilicate Mole ratio between absolute alcohol and tetraethyl orthosilicate Mole ratio between hexadecanol-palmitic acid-lauric acid and tetraethyl orthosilicate Mole ratio between silane coupling agent and tetraethyl orthosilicate
1 7 5 0.5 0.10
2 9 5 0.5 0.10
3 11 5 0.5 0.10
4 9 3 0.5 0.10
5 9 7 0.5 0.10
6 9 5 0.5 0.00
7 9 5 0.5 0.05
8 9 5 0.5 0.15
9 9 5 0.2 0.10
10 9 5 0.8 0.10
Table 1  Formulations of SiO2 based hexadecanol-palmitic acid-lauric acid microencapsulated phase change and humidity controlling materials
Fig.1  LPSA images of sample 1 (A), sample 2 (B) and sample 3 (C)
Fig.2  LPSA images of sample 4 (A), sample 2 (B) and sample 5 (C)
Fig.3  SEM images of sample 6 (A), sample 7 (B), sample 2 (C) and sample 8 (D)
Fig.4  FT-IR images of modified SiO2 (A), hexadecanol-palmitic acid-lauric acid (B), sample 9 (C), sample 2 (D) and sample 10 (E)
Fig.5  Equilibrium moisture content of sample 9 (A), sample 2 (B), sample 10 (C) and sample 6 (D)
Fig.6  Cooling curves (a. sample 9, b. sample 2, c. sample 10, d. sample 6)
Sample Phase change temperature (℃) Phase transition enthalpy (J/g) hexadecanol-palmitic acid-lauric acid
content (%)
Pure hexadecanol-palmitic acid-lauric acid 22.79~28.18 173.36~178.72 100
2 21.89~27.75 92.03~97.96 53.1~54.8
6 21.54~27.24 86.78~90.45 50.1~50.6
9 22.13~27.58 30.62~32.28 17.7~18.1
10 22.27~28.06 141.46~150.33 81.6~84.1
Table 2  Thermal properties of SiO2 based hexadecanol-palmitic acid-lauric acid microencapsulated phase change and humidity controlling materials
Relativehumidity
(%)
Equilibrium moisture content (g/g) Descent rate
(%)
Without cycling After 500 cycling
Adsorbing moisture process Desorption moisture process Adsorbing moisture process Desorption moisture process Adsorbing moisture process Desorption moisture process
32.78 0.0895 0.0993 0.0813 0.0898 9.16 9.57
43.16 0.1100 0.1225 0.1020 0.1182 7.27 3.51
52.89 0.1203 0.1345 0.1089 0.1251 9.48 6.99
64.92 0.1296 0.1424 0.1174 0.1316 9.41 7.58
75.29 0.1486 0.1586 0.1347 0.1474 9.35 7.06
84.34 0.1769 0.1830 0.1621 0.1697 8.37 7.27
97.30 0.2145 0.2150 0.1990 0.2035 7.23 5.35
Table3  Equilibrium moisture content of sample 2
Fig.7  Cooling curves of sample 2
1 A. Sharma, V. V. Tyagi, C. R. Chen, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 13(2), 318(2009)
doi: 10.1016/j.rser.2007.10.005
2 S. H. Lee, S. J. Yoon, Y. G. Kim, J. G. Lee, The utilization of micro- encapsulated phase change material wallboards for energy saving, Korean Journal of Chemical Engineering, 28(11), 2206(2011)
doi: 10.1007/s11814-011-0099-0
3 F. He, X. D. Wang, D. Z. Wu, New approach for sol-gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor , Energy, 67, 223(2014)
4 B. X. Li, T. X. Liu, L. Y. Hu, L. N. Gao, Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage, ACS Sustainable Chemistry & Energy, 1(3), 374(2013)
doi: 10.1021/sc300082m
5 C. M. Chen, Z. H. Chen, X. R. Zeng, X. M. Fang, Z. G. Zhang, Z. H. Chen, Fabrication and characterization of nanocapsules containing n-dodecanol by miniemulsion polymerization using interfacial redox initiation, Colloid & Polymer Science, 290(4), 307(2012)
6 M. Hunger, A. G. Entrop, I. Mandilaras, H. J. H.Brouwers, M. Founti, The behavior of self-compacting concrete containing micro-encapsulated phase change materials, Cement & Concrete Composites, 31(10), 731(2009)
7 G. Y. Fang, Z. Chen, H. Li, Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials, Chemical Engineering Journal, 163(1-2), 154(2010)
doi: 10.1016/j.cej.2010.07.054
8 MENG Duo, WANG Lijiu, Preparation and thermal properties of fatty acid/inorganic nano-particle form-stable phase change material, Journal of Building Materials, 16(1), 91(2013)
(孟多, 王立久, 脂肪酸/无机纳米颗粒基定形相变材料的制备与热性能, 建筑材料学报, 16(1), 91(2013))
doi: 10.3969/j.issn.1007-9629.2013.01.017
9 SHANG Jianli, LI Qianming, WANG Zhengjun, Preparation and thermal performance tests of microencapsulated gypsum-based phase change building material, Acta Energiae Solaris Sinica, 33(12), 2140(2012)
(尚建丽, 李乔明, 王争军, 微胶囊相变储能石膏基建筑材料制备及性能研究, 太阳能学报, 33(12), 2140(2012))
10 A. M. Borreguero, M. Carmona, M. L. Sanchez, L. V. José, F. R. Juan, Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio, Applied Thermal Engineering, 30(10), 1164(2010)
doi: 10.1016/j.applthermaleng.2010.01.032
11 SHANG Jianli, WANG Si, DONG Li, Prepared of PAR/POL/SOD-composite-wall microencapsulated and research of energy storage and humidity-control performance, Journal of Functional Materials, 44(8), 1141(2013)
(尚建丽, 王思, 董莉, PAR/POL/SOD复合微胶囊的制备及热湿性能研究, 功能材料, 44(8), 1(2013))
doi: 10.3969/j.issn.1001-9731.2013.08.019
12 ZHANG Hao, HUANG Kai, HUANG Xinjie, Study on degradation effect of Ce-TiO2photocatalyst coating on formaldehyde solution and its prediction model, Chinese Rare Earths, 35(4), 18(2014)
(张浩, 黄凯, 黄新杰, Ce-TiO2光催化涂料降解甲醛溶液的性能研究及预测模型, 稀土, 35(4), 18(2014))
13 SHANG Jianli, ZHANG Hao, XIONG lei, MA Xianglong, Preparation and texture of phase change materials of fatty acid/SiO2 composite, Chinese Journal of Material Research, 29(10), 757(2015)
(尚建丽, 张浩, 熊磊, 麻向龙, 脂肪酸/SiO2复合相变材料的制备及其对织构的影响因素, 材料研究学报, 29(10), 757(2015))
14 ZHANG Hao, HUANG Xinjie, LIU Xiuyu, TANG Gang, Optimization for preparation of phase change and humidity control composite materials of hexadecanol-palmitic acid-lauric acid/SiO2, Chinese Journal of Material Research, 29(9), 671(2015)
(张浩, 黄新杰, 刘秀玉, 唐刚, 优化制备棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料, 材料研究学报, 29(9), 671(2015))
15 HUANG Zishuo, YU Hang, ZHANG Meiling, Humidity-control materials and their humidity absorption and desorpttion rate variation, Journal of Tongji University(Natural Science), 42(2), 310(2014)
(黄子硕, 于航, 张美玲, 建筑调湿材料吸放湿速度变化规律, 同济大学学报(自然科学版), 42(2), 310(2014))
doi: 10.3969/j.issn.0253-374x.2014.02.023
16 YU Yongsheng, JING Qiangshan, SONG Fangfang, Study on the ternary phase change system of H/PA/LA, Journal of Building Materials, 16(1), 97(2013)
(于永生, 井强山, 宋方方, 十六醇/十六酸/十二酸三元复合相变体系研究, 建筑材料学报, 16(1), 97(2013))
doi: 10.3969/j.issn.1007-9629.2013.01.018
17 S. Pal, M. R. Hajj, W. P. Wong, I. K. Puri, Thermal energy storage in porous materials with adsorption and desorption of moisture, International Journal of Heat and Mass Transfer, 69, 285(2014)
doi: 10.1016/j.ijheatmasstransfer.2013.10.023
[1] PENG Zitong, GAO Yanrong, YAO Chu, YAO Junlong, ZHU Wenwen, XU Wen, JIANG Xueliang. Preparation and Photocatalytic Activity of Fe/Yb Co-doped Titanium Dioxide Hollow Sphere[J]. 材料研究学报, 2021, 35(2): 135-142.
[2] Aijiao LI,Yanhua WANG,Lian ZHONG,Jia WANG,Lin FENG,Peipei YANG. Influence of SiO2 Particles on Electrochemical Characteristics of Carbon Steel[J]. 材料研究学报, 2017, 31(6): 422-428.
[3] Dongze LV,Zhaoke CHEN,Xiang XIONG,Yalei WANG,Wei SUN,Zehao LI. Microstructure and Tribological Property of C-TaC Coatings on Graphite Prepared by Chemical Vapor Deposition[J]. 材料研究学报, 2016, 30(9): 690-696.
[4] NIE Yanyan, SUN Xiaogang, CAI Manyuan, WU Xiaoyong, LIU Zhenhong, YUE Lifu. Graphitized Whisker-like Carbon Nanotubes as Electrodes for Supercapacitors[J]. 材料研究学报, 2016, 30(7): 538-644.
[5] Hao ZHANG,Xinjie HUANG,Xiuyu LIU,Gang TANG. Optimization for Preparation of Phase Change and Humidity Control Composite Materials of Hexadecanol-Palmitic Acid-lauric Acid/SiO2[J]. 材料研究学报, 2015, 29(9): 671-678.
[6] Zhipeng PANG,Xiaogang SUN,Xiaoyuan CHENG,Xiaoyong WU,Qi FU. Effect of Carbon Nanotube Content on Electromagnetic Interference Shielding Performance of Carbon Nanotube-Cellulose Composite Materials[J]. 材料研究学报, 2015, 29(8): 583-588.
[7] Yunfeng TIAN,Zhen LI,Yang WANG,Ping ZENG,Lingyi JIANG. Preparation and Performance of a Phase Change Heat Storage Composite of Paraffin/Different Particle Sized Expanded Graphite[J]. 材料研究学报, 2015, 29(4): 262-268.
[8] Hao ZHANG,Xinjie HUANG,Xiuyu LIU. Preparation of Hexadecanol-Palmitic Acid-Lauric Acid/SiO2 Composite as Phase Change Material for Humidity Control[J]. 材料研究学报, 2015, 29(11): 867-873.
[9] Yujie KOU,Yongan NIU,Jiupeng ZHAO,Junkai LIU,Yao LI. Carbonization Treatment on Performance of Carbon Fibre Reinforced Polyimide Composite Materials[J]. 材料研究学报, 2014, 28(8): 573-578.
[10] Qiang XU,Shulin ZHAN,Qilong ZHANG,Jiansong SHENG,Hui YANG. Preparation and Properties of Nano-silicone Marine Reinforced Concrete Permeable Protective Coating[J]. 材料研究学报, 2014, 28(6): 443-447.
[11] Zaoyu SHEN,Guanghong HUANG,Limin HE,Rende MU,Zhendong CHANG. Preparation and Thermal Stability of Large-sized TiAl/Ti3Al Micro-laminated Thin Sheets[J]. 材料研究学报, 2014, 28(4): 314-320.
[12] ZHANG Jin ZHU Peixian** DAI Jianqing ZHOU Shenggang CAO Yong. Studies on Interface Diffusion Layer of Ti/Al Composite Electrode Substrate Materials[J]. 材料研究学报, 2013, 27(6): 597-604.
[13] QIU Jun, CHEN Dianbing, QIU Tingting, LI Dan, JIN Lei. Aging Properties of Carbon Nanotubes/Carbon Fiber/Epoxy Resin Composites[J]. 材料研究学报, 2013, 27(2): 131-138.
[14] KONG Ying XU Ruidong HUANG Liping GUAN Yongyong CHEN Buming. Electrochemical Properties of Pb–0.3%Ag/Pb–Co3O4 Composite Inert Anodes[J]. 材料研究学报, 2012, 26(5): 495-502.
[15] LIU Guangming YANG Xiaodong LIN Jiyue TIAN Jihong. Influence of MTES Content on the Properties of Al2O3/Organosilicone/SiO2 Hybrid Coatings[J]. 材料研究学报, 2012, 26(4): 402-407.
No Suggested Reading articles found!