Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (1): 1-9    DOI: 10.11901/1005.3093.2014.293
Current Issue | Archive | Adv Search |
Performance of 3D Tissue Engineering Scaffolds of Nanocellulose/High Cationic Polymers Composite
Aimin TANG(),Yuan LIU,Shan ZHAO
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
Cite this article: 

Aimin TANG,Yuan LIU,Shan ZHAO. Performance of 3D Tissue Engineering Scaffolds of Nanocellulose/High Cationic Polymers Composite. Chinese Journal of Materials Research, 2015, 29(1): 1-9.

Download:  HTML  PDF(8473KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three-dimensional (3D) tissue engineering scaffolds were prepared by compounding nanocellulose with polyacrylic cationic polymer and polyethylene amine cationic polymer respectively. The structural morphology of the scaffolds was characterized by scanning electron microscopy (SEM).The influence of the relative molecular mass and dosages of the polymers on the pore structure of the scaffolds was investigated, while a new method for fast measuring the porosity of the scaffolds was established based on SEM image processing. The water retention value (WRV) of the scaffolds was also measured. Results show that the porosity of all the nanocellulose 3D tissue engineering scaffolds is larger than 90%. The porosity value obtained by the new image processing method is close to that measured according to Archimedes principle with a difference less than 5%, which indicated that this method was reliable. All the 3D scaffolds have high WRV (>200%). Both the porosity and WRV of the 3D scaffolds can be adjusted by varying the species and dosage of polymers. Therewith the nanocellulose 3D tissue engineering scaffolds may optionally be prepared to meet the requirement for tissue and cell culture.

Key words:  composites      nanocellulose      tissue engineering scaffold      image processing     
Received:  18 June 2014     
Fund: *Supported by National Basic Research Program of China No. 2010CB732206.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.293     OR     https://www.cjmr.org/EN/Y2015/V29/I1/1

Fig.1  AFM image of nanocellulose
Fig.2  SEM images of scaffolds prepared by compounding nanocellulose with different percentage of polymer A. (a) 0; (b, f) 0.79%; (c, g) 1.57%; (d, h) 3.85%; (e, i) 7.41% (a-e, surface section; f-i, cross section)
Fig.3  SEM images of scaffolds prepared by compounding nanocellulose with different percentage of polymer B. (a, e) 0.79%; (b, f) 1.57%; (c, g) 3.85%; (d, h) 7.41% (a-d, surface section; e-h, cross section)
Fig.4  Porosity measured by liquid displacement experiment for nanocellulose/polymer A and nanocellulose/polymer B compound scaffolds
Mass percentage of polymer A /% Image processing /% Liquid displacement /% Absolute error/% Relative error/%
0.79 94.98 97.42 2.44 2.5
1.57 93.43 93.24 0.19 0.2
3.85 7.41 93.57 93.70 92.02 90.37 1.55 3.33 1.68 3.68
Table 1  Porosity data of the nanocellulose/polymer A compound scaffolds measured by liquid displacement experiment and image processing method
Mass percentage of polymer B/% Image processing/% Liquid displacement/% Absolute error/% Relative error/%
0.79 92.41 93.96 1.55 1.65
1.57 94.93 96.76 1.83 1.89
3.85 7.41 90.67 92.40 91.65 90.77 0.98 1.63 1.07 1.79
Table 2  Porosity data of the nanocellulose/polymer B compound scaffolds measured by liquid displacement experiment and image processing method
Fig.5  SEM images after threshold segmentation (mass percentage of polymers: (a, e) 0.79%, (b, f) 1.57%, (c, g) 3.85%, (d, h)7.41%; a-d, polymer A; e-h, polymer B)
1 ZHANG Anxiong,LV Delong, ZHONG Wei, CHENG Weizhuang, DU Qiangguo, Study advances in natural biomaterials for tissue engineering, Beijing Biomedical Engineering, 24(5), 387(2005)
1 (张安兄, 吕德龙, 钟 伟, 程为庄, 杜强国, 天然生物材料构建组织工程支架的研究进展,?北京生物医学工程, 24(5), 387(2005))
2 R. Langer, J. P. Vacanti,Tissue engineering, Science, 260(5110), 920(1993)
3 J. M. Holzwarth, P. X. Ma,Biomimetic nanofibrous scaffolds for bone tissue engineering,?Biomaterials, 32(36), 9622(2011)
4 Michael Keeney, Janice H. Lai,Fan Yang, Recent progress in cartilage tissue engineering, Current Opinion in Biotechnology, 22(5), 734(2011)
5 D. Y. Lewitus, J. Landers, J. R. Branch, K. L. Smith, G. Callegari, J. Kohn, A. V. Neimark,Biohybrid carbon nanotube/agarose fibers for neural tissue engineering, Advanced Functional Materials, 21(14), 2624(2011)
6 S. He, T. Xia, H. Wang, L. Wei, X. Luo, X. Li,Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels, Acta Biomaterialia, 8(7), 2659(2012)
7 S. B?ttcher-Haberzeth, T. Biedermann, A. S.Klar, L. Pontiggia, J. Rac, D. Nadal, M. Meuli,Tissue engineering of skin: human tonsil-derived mesenchymal cells can function as dermal fibroblasts, Pediatric Surgery International, 30(2), 213(2014)
8 B. Andrée, A. B?r, A. Haverich, A. Hilfiker,Small intestinal submucosa segments as matrix for tissue engineering: review, Tissue Engineering Part B: Reviews, 19(4), 279(2013)
9 T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux, A. Isogai,Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions, Biomacromolecules, 10(7), 1992(2009)
10 S. Iwamoto, A. N. Nakagaito, H. Yano,Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites, Applied Physics A, 89(2), 461(2007)
11 T. Lu, Q. Li, W. Chen, H. Yu,Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold, Composites Science and Technology, 94, 132(2014)
12 I. Siró, D. Plackett,Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, 17(3), 459(2010)
13 R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood,Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Reviews, 40(7), 3941(2011)
14 E. M. Fernandes, R. A. Pires, J. F. Mano, R. L. Reis,Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field, Progress in Polymer Science, 38(10), 1415(2013)
15 Jiankang Song,Aimin Tang, Tingting Liu, Jufang Wang, Fast and continuous preparation of high polymerization degree cellulose nanofibrils and their three-dimensional macroporous scaffold fabrication, Nanoscale, 5(6), 2482(2013)
16 F J O'Brien,Biomaterials & scaffolds for tissue engineering, Materials Today, 14(3), 88(2011)
17 C. M. Murphy, M. G. Haugh, F. J. O'Brien,The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials, 31(3), 461(2010)
18 B. J. Story, W. R. Wagner, D. M. Gaisser, S. D. Cook, A. M. Rust-Dawicki,In vivo performance of a modified CSTi dental implant coating, International Journal of Oral & Maxillofacial Implants, 13(6), 749(1998)
19 G. Shi, Q. Cai, C. Wang, N. Lu, S. Wang, J. Bei,Fabrication and biocompatibility of cell scaffolds of poly (L‐lactic acid) and poly (L‐lactic‐co‐glycolic acid), Polymers for Advanced Technologies, 13(3-4), 227(2002)
20 LIU Qi,HU Yafei, XIONG Jianjun, Experimental study on porosity measurement on graphite porous materials, Lubrication Engineering, 35(10), 99(2010)
20 (刘 颀, 胡亚非, 熊建军, 石墨多孔材料孔隙率测定方法研究, 润滑与密封, 35(10), 99(2010))
21 S. Maria,Methods for porosity measurement in lime-based mortars, Construction and Building Materials, 24(12), 2572(2010)
22 TANG Chaosheng,SHI Bin, WANG Baojun, Factors affecting analysis of soil microstructure using SEM, Chinese Journal of Geotechnical Engineering, 30(4), 560(2008)
22 (唐朝生, 施 斌, 王宝军, 基于SEM土体微观结构研究中的影响因素分析, 岩土工程学报, 30(4), 560(2008))
23 ZHOU Ming,WANG Hongbo, WANG Yinli, GAO Weidong, Characterization of porosity of nanofiber membrane based on image processing technology, Journal of Textile Research, 33(1), 20(2012)
23 (周 明, 王鸿博, 王银利, 高卫东, 基于图像处理技术的纳米纤维膜孔隙率表征, 纺织学报, 33(1), 20(2012))
24 D. Depan, P. K. C. Venkata Surya, B. Girase, R. D. K. Misra,Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering, Acta biomaterialia, 7(5), 2163(2011)
25 S. Ucar, P. Yilgor, V. Hasirci, N. Hasirci,Chitosan‐based wet‐spun scaffolds for bioactive agent delivery,?Journal of Applied Polymer Science, 130(5), 3759(2013)
26 S. Attaway,Matlab: A practical introduction to programming and problem solving, Elsevier, (2012)
27 SONG Jiankang,Preparation of cellulose nanofibrils and their application in tissue engineering scaffold, Master degree (South China University of Technology, 2012)
27 (宋建康, 纤维素纳米纤维的制备及其在组织工程支架中的应用, 硕士论文(华南理工大学, 2012))
28 X. Luo, J. Y. Zhu,Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses, Enzyme and Microbial Technology, 48(1), 92(2011)
29 HUANG Jinzhong,LI Xuesheng, LU Zejian, QUAN Daping, In vitro and in vivo study on the degradation and biocompatibility of a poly-DL-lactide(PLE) polymer, modem Rehabilitation, 5(7), 58(2001)
29 (黄金中, 李雪盛, 卢择俭, 全大萍, 新型高孔隙率海绵状聚乳酸支架在软骨组织工程研究和应用中的意义, 现代康复, 5(7), 58(2001))
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
No Suggested Reading articles found!