Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (3): 204-210    DOI: 10.11901/1005.3093.2013.603
Current Issue | Archive | Adv Search |
Crystallization Kinetics of Amorphous Alloys Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)
Ruwu WANG1,3,**(),Jing LIU1,2,Zhanghua GAN1,Chun ZENG3,Fengquan ZHANG3
1. College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081
2. State Key Laboratory for Advanced Metals and Materials, Beijing University of Science and Technology,
Beijing 100083
3. National Engineering Research Center for Silicon Steel, Wuhan 430080
Cite this article: 

Ruwu WANG,Jing LIU,Zhanghua GAN,Chun ZENG,Fengquan ZHANG. Crystallization Kinetics of Amorphous Alloys Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6). Chinese Journal of Materials Research, 2014, 28(3): 204-210.

Download:  HTML  PDF(1815KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Amorphous ribbons Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6) were prepared by a normal single copper wheel melt spinning technique in atmosphere, which then were isothermally annealed at 470℃、510℃、550℃ and 590℃ respectively for 1 h in a vacuum furnace. The microstructure and crystallization kinetics of the ribbons were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimeter (DSC) measurements. While the crystallization activation energies of amorphous ribbons were calculated by using Kissinger, Ozawa and Augis-Bennett models based on differential thermal analysis data. The local Avrami exponent n for primary crystallization was calculated by using Johnson-Mehl-Avrami (JMA) equation. The significant variation of local Avrami exponent n with crystallization volume fraction α demonstrated that the primary crystallization kinetics of amorphous ribbons varied at different stages. In the initial stage, the crystallization mechanism was diffusion controlled bulk crystallization with three dimensional nucleation and grain growth, while the nucleation rate deceased with time. In the following stage, it was surface crystallization with one dimensional nucleation and grain growth, while the nucleation rate was near zero. The average sizes D of α-Fe (Si, Ge) grains for the samples annealed at 510℃、550℃ and 590℃for 1 h in a vacuum furnace were less than 15 nm as confirmed both by XRD and TEM measurements.

Key words:  foundational discipline in materials science      Fe73.5Si13.5-xGexB9Cu1Nb3      microstructure      crystallization kinetics     
Received:  16 August 2013     
Fund: *Supported by the State Key Lab of Advanced Metals and Materials No.2011-ZD03 and the Hubei Provincial Department of Education No.D20111103.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.603     OR     https://www.cjmr.org/EN/Y2014/V28/I3/204

Fig.1  XRD patterns of as-spun samples Fe73.5Si13.5-xGex-B9Cu1Nb3 (x=3, 6)
Fig.2  DSC curves of as-spun samples Fe73.5Si10.5Ge3B9-Cu1Nb3 performed at various heating rates from 5–20℃/min
Fig.3  DSC curves of as-spun samples Fe73.5Si7.5Ge6B9-Cu1Nb3 performed at various heating rates from 5–20℃/min
x b/(℃/min) Tx1/℃ Tp1/℃ Tx2/℃ Tp2/℃ ΔT/℃
3 5 492 519 620 642 123
3 10 500 528 631 655 127
3 15 506 535 638 662 127
3 20 508 539 641 666 127
6 5 470 498 621 632 134
6 10 475 509 628 645 136
6 15 479 515 633 653 138
6 20 482 518 637 658 140
Table 1  Crystallization onset temperatures and peak temperatures (Tx1, Tp1 and Tx2, Tp2) and ΔT= Tp2-Tp1 of Fe73.5Si13.5-xGexB9Cu1Nb3 (x=3, 6) amorphous alloys obtained from DSC curves
Fig.4  Kissinger plots of as-spun samples Fe73.5Si13.5-xGex-B9Cu1Nb3 (x=3, 6), R1-the first crystallization, R2-the second crystallization
Fig.5  Ozawa plots of as-spun samples Fe73.5Si13.5-xGex-B9Cu1Nb3 (x=3, 6), R1-the first crystallization, R2-the second crystallization
Fig.6  Augis-Bennett plots of as-spun samples Fe73.5Si13.5-x-GexB9Cu1Nb3 (x=3, 6), R1-the first crystallization, R2-the second crystallization
x Model R1 (kJ/mol) R2 (kJ/mol)
3 Kissinger 352 391
3 Ozawa 366 407
3 Augis-Bennett 356 396
6 Kissinger 331 356
6 Ozawa 344 371
6 Augis-Bennett 334 360
Table 2  The crystallization activation energies of Fe73.5Si13.5-x-GexB9Cu1Nb3 (x=3, 6) amorphous alloys, R1-the first crystallization, R2-the second crystallization
Fig.7  Local Avrami exponent n as a function of crystallized fraction α for as-spun samples Fe73.5Si13.5-xGex-B9Cu1Nb3 (x=3, 6) performed at a heating rate of 10℃/min
Fig.8  XRD patterns of as-spun sample Fe73.5Si10.5Ge3-B9Cu1Nb3 annealed at various temperatures for 1 h in a vacuum
Fig.9  XRD patterns of as-spun sample Fe73.5Si7.5Ge6B9-Cu1Nb3 annealed at various temperatures for 1 h in a vacuum
Fig.10  TEM micrographs of Fe73.5Si7.5Ge6B9Cu1Nb3 the as-spun sample (a) and the samples annealed at 470℃ (b), 510℃ (c), 550℃ (d), 590℃ (e) (in 1 h keeping time). The inset shows selected area electron diff raction pattern
1 Y. Yoshizawa, S. Oguma, K. Yamauchi,New Fe-based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys., 64, 6044(1988)
2 G. Herzer,Magnetization process in nanocrystalline ferromagnets, J. Mater. Sci. Eng. A, 133, 1(1991)
3 G. Herzer,Grain structure and magnetism of nanocrystalline ferromagnets, J. IEEE Trans. Magn., 25, 3327(1989)
4 N. Chau, N. X. Chien, N. Q. Hoa, P. Q. Niem, N. D. Tho, V. V. Hiep,Investigation of nanocomposite materials with ultrasoft and high performance hard magnetic properties, J. Magn. Magn. Mater., 282, 174(2004)
5 N. Chau, N. Q. Hoa, N. D. The, L. V. Vu,The effect of Zn, Ag and Au substitution for Cu in Finemet on the crystallization and magnetic properties, J. Magn. Magn. Mater., 303, e415(2006)
6 D. Muraca, J. Moya, V. J. Cremaschi, H. R. Sirkin,Amorphous and nanocrystalline fraction calculus for the Fe73.5Si3.5Ge10Nb3B9Cu1 alloy, Physica B, 398, 325(2007)
7 D. Muraca, V. Cremaschi, J. Moya, H. Sirkin,FINEMET type alloy without Si: Structure and magnetic properties, J. Magn. Magn. Mater., 320, 1639(2008)
8 D. Muraca, V. Cremaschi, J. Moya, H. Sirkin, Structure magnetic correlation of Finemet alloys with Ge addition, J. Magn. Magn. Mater., 320, 810(2008)
9 J. A. Moya, V. J. Cremaschi, H. Sirkin,From Fe3Si towards Fe3Ge in Finemet-like nanocrystalline allys: Mossbauer spectroscopy, Physica B, 389, 159(2007)
10 J. A. Moya,Nanocrystals and amorphous matrix phase studies of Finemet-like alloys containing Ge, J. Magn. Magn. Mater., 322, 1748(2010)
11 V. Cremaschi, G. Sanchez, H. Sirkin,Magnetic properties and structure evolution of FINEMET alloys with Ge addition, Physica B, 354, 213(2004)
12 W. A. Johnson, R. F. Mehl,Reaction kinetics in processes of nucleation and growth, Trans. AIME, 135, 416(1939)
13 V. Cremaschi, A. Saad, M. J. Ramos, H. Sirkin,Magnetic and structural characterization of Finemet type alloys with addition of Ge and Co, Journal of Alloys and Compounds, 369, 101(2004)
14 J. S. Blazquez, S. Roth, A. Conde,Effect of partial substitution of Ge for B on the high temperature response of soft magnetic nanocrystalline alloys, Journal of Alloys and Compounds, 395, 313(2005)
15 LI Yang,LU Wei, YAN Biao, Crystallization behavior of Finemet amorphous alloy, Journal of Materials Science and Engineering, 24(1), 132(2006)
15 (黎 阳, 陆 伟, 严 彪, FINEMET合金晶化行为的DSC研究, 材料科学与工程学报, 24(1), 132(2006))
16 H. E. Kissinger,Reaction kinetics in differential thermal analysis, Anal. Chem., 29, 1702(1957)
17 T. Ozawa,A new method of analyzing thermagravimetric data, Bull. Chem. Soc. (Japan), 35, 1881(1965)
18 J. A. Augis, J. E. J. Bennett,Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method, Them. Anal., 13, 283(1978)
19 W. Lu, B. Yan, W. H. Huang, Complex primary crystallization kinetics of amorphous Finemet alloy, J. Non-Cryst. Solids, 351, 3320(2005)
20 M. H. Phan, H. X. Peng, M. R. Wiscom,Effect of annealing on the microstructure and magnetic properties of Fe-based nanocomposite materials, Composites, Part A, 37, 191(2006)
21 J. M. Christian,The Theory of Transformations in Metals and Alloys, 2nd Ed., New York: Pergamon, (1975)
22 G. Ghosh, M. Chandrasekaran, L. Delaey,Isothermal crystallization kinetics of Ni24Zr76 and Ni24(Zr-X)76 amorphous alloys, Acta Metall. Mater., 39, 925(1991)
23 N. X. Sun, K. Zhang, X. H. Zhang, X. D. Liu, K. Lu,Nanocrystallization of amorphous Fe33Zr67 alloy, Nanostruct. Mater., 7, 637(1996)
24 K. Lu, X. D. Liu, F. H. Yuan,Synthesis of the NiZr2 intermetallic compound nanophase materials, Physica B, 217, 153(1996)
25 N. X. Sun, X. D. Liu, K. Lu,An explaination to the anomalous Avrami exponent, Scr. Mater., 34, 1201(1996)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[8] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[10] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[11] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[12] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[13] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[14] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[15] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
No Suggested Reading articles found!