Please wait a minute...
Chinese Journal of Materials Research  2012, Vol. 26 Issue (5): 495-502    DOI:
Current Issue | Archive | Adv Search |
Electrochemical Properties of Pb–0.3%Ag/Pb–Co3O4 Composite Inert Anodes
KONG Ying1,2,  XU Ruidong1,2,  HUANG Liping2,  GUAN Yongyong1,2,  CHEN Buming1,2
1.Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093
2.State Key Laboratory Breeding Base of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province, Kunming 650093
3.Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050
Cite this article: 

KONG Ying XU Ruidong HUANG Liping GUAN Yongyong CHEN Buming. Electrochemical Properties of Pb–0.3%Ag/Pb–Co3O4 Composite Inert Anodes. Chinese Journal of Materials Research, 2012, 26(5): 495-502.

Download:  PDF(1104KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pb–0.3%Ag/Pb–Co3O4 composite inert anodes were prepared on the surface of Pb–0.3%Ag substrates, the electrochemical properties of the composite inert anodes obtained under different forward pulse average current densities from 2 A/dm2 to 5 A/dm2 and different Co3O4 concentrations from 10 g/L to 40 g/L in bath were investigated. The anodic polarization curves, cyclic voltammetry curves and Tafel polarization curves were measured in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+ and 150 g/L H2SO4 at 35 , the kinetic parameters of oxygen evolution, voltammetry charge, corrosion potential and corrosion current were obtained. The results show that Pb–0.3%Ag/Pb–Co3O4 composite inert anode obtained under forward pulse average current density of 3 A/dm2 and Co3O4 concentration
of 30 g/L in bath, possess higher electrocatalytic activity, lower overpotential of oxygen evolution, better reversibility of electrode reaction and corrosion resistance in a synthetic zinc electrowinning electrolyte. The overpotential of oxygen evolution of the composite inert anode is 0.891 V under 500 A/m2, and it is 280 mV lower than that of Pb–1%Ag alloy; the surface voltammetry charge q∗ is 0.725 C·cm−2, and is 26.5% higher than that of Pb–1%Ag alloy; the corrosion current is also lower than that of Pb–1%Ag alloy. Large active surface areas and active substance numbers on the surface of the composite inert anode improve the electrocatalytic activity for oxygen evolution in [ZnSO4+H2SO4] solution. Fine and uniform grains, compact microstructures and fewer surface defects increase the corrosion resistance of the composite inert anode.

Key words:  composite materials      double–pluse electrodeposition      composite inert anod      Co3O4      electrochemical properties     
Received:  09 July 2012     
ZTFLH:  TB321  
Fund: 

Supported by National Natural Science Foundation of China No.51004056 and Opening Foundation of Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences No.KKZ6201152009.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I5/495

1 HU Xinfa,LIU Quanbing, LIAO Shijun, Progress on development and research of coated titanium insoluble anode, Journal of Materials Protection, 41(8), 4l(2008)

(胡新发, 刘全兵, 廖世军, 钛基涂层不溶性阳极的开发与研究进展, 材料保护,  41(8), 4l(2008))

2 J.Aromaa, O.Fors´en, Evaluation of the electrochemical activity of a Ti–RuO2–TiO2 permanent anode, Electrochimica Acta, 51(27), 6104(2006)

3 X.Wang, D.Tang, J.G.Zhou, Microstructure, morphology and electrochemical property of RuO2 70 SnO2 30 mol% and RuO2 30 SnO2 70 mol% coatings, Journal of Alloys and Compound, 430(1–2), 60(2007)

4 J.Ribeiro, A.R.De Andrade,Characterization of RuO2–Ta2O5 coated titanium electrode: Microstructure, morphology, and electrochemical investigation, Journal of The Electrochemical Society, 151(10), 106(2004)

5 C.C.You, A.Chompoosor, V.M.Rotello, The biomacromolecule nanoparticle interface, Nano Today, 2(3), 34(2007)

6 Trasatti S, Physical electrochemistry of ceramic oxides, Elcctrochimica Acta, 36(2), 225(I991)

7 C.N.Ho, B.J.Hwang, Effect of hydrophobicity on the hydrophobic–modified polytetrafluoroethylene/PbO2 electrode towards oxygen evolution, Journal of Electroanalytical Chemistry, 377(1/2), 177(1994)

8 S.Cattarin, P.Guerriero, M.Musiani, Preparation of anodes for oxygen evolution by electrodeposition of composite Pb and Co oxides, Electrochimica Acta, 46(26–27), 4229(2001)

9 M.Musiani, F.Furlanetto, P.Guerriero, Electrochemical deposition and properties of PbO2+Co3O4 composites, Journal of Electroanalytical Chemistry, 440(1), 131(1997)

10 C.Iwakura, M.Matsuoka, T.Kohno, Mixing effect of metal oxides on negative electrode reactions in the nickel–hydride battery, Journal of the Electrochemical Society, 141(9), 2306(1994)

11 ZHANG Rui, CHEN Youcun, Synthesis of Pt/Co3O4 nanocomposite and its electrocatalytic activity, Journal of Anqing Teachers College (Natural Science Edition), 17(2), 75(2011)

(张 锐, 陈友存, Pt/Co3O4纳米复合材料的合成及其电催化性质, 安庆师范学院学报(自然科学版),  17(2),75(2011))

12 ZHANG Yuping, Recent development of anode for electrowinning zinc, Hydrometallurgy of China, 20(4), 167(2001)

(张玉萍, 锌电积用阳极的研究与发展, 湿法冶金,  20(4), 167(2001))

13 W.B.Cai, Y.Q.Wan, H.T.Liu, A study of the reduction process of anodic PbO2 film on Pb in sulfuric acid solution, Journal of Electroanalytical Chemistry, 387(1–2), 95(1995)

14 S.Nijer, J.Thonstad, G.M.Haarberg, Cyclic and linear voltammetry on Ti/IrO2–Ta2O5–MnOX electrodes in sulfuric acid containing Mn2+ ions, Electrochimica Acta, 46(23), 3503(2001)

15 CHEN Zhenfang, JIANG Hanying, SHU Naide, Kinetics of oxgen evolution reaction on PbO2–Ti/MnO2 electrode and the electrocatalysis, Acta Metallurgica Sinica, 28(2), B50(1992)

(陈振方, 蒋汉瀛, 舒奈德, PbO2--Ti/MnO2电极上析氧反应动力学及电催化, 金属学报,  28(2), B50(1992))

16 LI Aosheng, LIU Kaiyu, ZHANG Qingqing, Electrochemical performance of the AB5–type hydrogen storage alloy adding Co3O4,Battery Bimonthly, 40(4), 201(2010)

(李傲生, 刘开宇, 张青青, 添加Co3O4的AB5型贮氢合金的电化学性能, 电池,  40(4), 201(2010))

17 CHANG Gang, JIANG Zucheng, PENG Tianyou, HU Bin, Preparation of high–specific–surface–srea nanometer–sized alumina by sol–gel method and study on adsorption behaviors

of transition metal ions on the alumina powder witll ICP–AES, Acta Chimica Sinica, 60(1), 100(2003)

(常 钢, 江祖成, 彭天右, 胡 斌, 溶胶--凝胶法制备高比表面积的纳米氧化铝及其对过渡金属离子吸附行为的研究, 化学学报,  60(1), 100(2003))

18 L.A.Da Silva, J.F.C.Boodts, L.A.DeFaria, ‘In situ’ and ‘ex situ’ characterization of the surface properties of the RuO2(x)+Co3O4(1−x) system, Electrochimica Acta, 45(17), 2719(2000)

19 H.Vogt, Note on a method to interrelate inner and outer electrode areas, Electrochimica Acta, 39(13), 1981(1994)

20 WANG Yaqiong,TONG Hongyang,XU Wenlin, Electrocatalytic activity of Ti/TiO2 electrodes in H2SO4 solution, Chinese Journal of Process Engineering, 3(4), 356(2003)

(王雅琼, 童宏扬, 许文林, Electrocatalytic activity of Ti/TiO2 electrodes in H2SO4 solution, 过程工程学报,  3(4), 356(2003))

21 K.W.Kim, E.H.Lee, J.S.Kim, K.H.Shin, K.H.Kim, Study on the electro–activity and non–stochiometry of a Ru– based mixed oxide electrode, Electrochimca Acta, 46(6), 9l5(2001)

22 WANG Yaqiong, TONG Hongyang, XU Wenlin, Study on the structure and electrocatalytical activity of Ti/TiO2 electrode prepared by polymeric precursor method,Rare Metal Materials and Engineering, 34(3), 455(2005)

(王雅琼, 童宏扬, 许文林, 聚合前驱体法制备Ti/TiO2电极的结构和电催化活性, 稀有金属材料与工程,  34(3), 455(2005))

23 L.A.Da Silva, V.A.Alves, S.Trasatti, Surface and electrocatalytic properties of ternary oxides Ir0.3Ti(0.7−x)PtxO2, Oxygen evolution from acidic solution, Journal of Electroanalytical

Chemistry, 427(1-2), 97(1997)

[1] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[2] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[3] PENG Zitong, GAO Yanrong, YAO Chu, YAO Junlong, ZHU Wenwen, XU Wen, JIANG Xueliang. Preparation and Photocatalytic Activity of Fe/Yb Co-doped Titanium Dioxide Hollow Sphere[J]. 材料研究学报, 2021, 35(2): 135-142.
[4] Dongze LV,Zhaoke CHEN,Xiang XIONG,Yalei WANG,Wei SUN,Zehao LI. Microstructure and Tribological Property of C-TaC Coatings on Graphite Prepared by Chemical Vapor Deposition[J]. 材料研究学报, 2016, 30(9): 690-696.
[5] NIE Yanyan, SUN Xiaogang, CAI Manyuan, WU Xiaoyong, LIU Zhenhong, YUE Lifu. Graphitized Whisker-like Carbon Nanotubes as Electrodes for Supercapacitors[J]. 材料研究学报, 2016, 30(7): 538-644.
[6] ZHANG Hao, HUANG Xinjie, ZONG Zhifang, LIU Xiuyu. Preparation and Properties of SiO2 Based Hexadecanol-Palmitic Acid-Lauric Acid Microencapsulated Phase Change and Humidity Controlling Materials with Fine Particle Size[J]. 材料研究学报, 2016, 30(6): 418-426.
[7] ZHANG Juan, CHEN Xiujuan, ZHANG Penglin. Synthesis and Electrochemical Properties of Flower-like SnS2 by Triton X-100 Assisted Hydrothermal Method as Negative Electrode Material for Lithium Ion Batteries[J]. 材料研究学报, 2016, 30(1): 63-67.
[8] Zhipeng PANG,Xiaogang SUN,Xiaoyuan CHENG,Xiaoyong WU,Qi FU. Effect of Carbon Nanotube Content on Electromagnetic Interference Shielding Performance of Carbon Nanotube-Cellulose Composite Materials[J]. 材料研究学报, 2015, 29(8): 583-588.
[9] Yunfeng TIAN,Zhen LI,Yang WANG,Ping ZENG,Lingyi JIANG. Preparation and Performance of a Phase Change Heat Storage Composite of Paraffin/Different Particle Sized Expanded Graphite[J]. 材料研究学报, 2015, 29(4): 262-268.
[10] Yujie KOU,Yongan NIU,Jiupeng ZHAO,Junkai LIU,Yao LI. Carbonization Treatment on Performance of Carbon Fibre Reinforced Polyimide Composite Materials[J]. 材料研究学报, 2014, 28(8): 573-578.
[11] Fu WANG,Peixian ZHU,Shenggang ZHOU,Yong CAO. Electrocatalytic Properties of RuO2-TiO2 and TiB2 Coated Ti Based Anodes[J]. 材料研究学报, 2014, 28(8): 610-614.
[12] Qiang XU,Shulin ZHAN,Qilong ZHANG,Jiansong SHENG,Hui YANG. Preparation and Properties of Nano-silicone Marine Reinforced Concrete Permeable Protective Coating[J]. 材料研究学报, 2014, 28(6): 443-447.
[13] Zaoyu SHEN,Guanghong HUANG,Limin HE,Rende MU,Zhendong CHANG. Preparation and Thermal Stability of Large-sized TiAl/Ti3Al Micro-laminated Thin Sheets[J]. 材料研究学报, 2014, 28(4): 314-320.
[14] Kai ZHOU,Peiling KE,Aiying WANG,Yousheng ZOU. Electrochemical Properties of Nitrogen-doped DLC Films Deposited by PECVD Technique[J]. 材料研究学报, 2014, 28(3): 161-165.
[15] ZHANG Jin ZHU Peixian** DAI Jianqing ZHOU Shenggang CAO Yong. Studies on Interface Diffusion Layer of Ti/Al Composite Electrode Substrate Materials[J]. 材料研究学报, 2013, 27(6): 597-604.
No Suggested Reading articles found!