Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (5): 458-465    DOI:
论文 Current Issue | Archive | Adv Search |
Preparation of silicalite–1 coating on SiC foam ceramics by support self–transformation
JIAO Yilai;  YANG Zhenming;  CAO Xiaoming ; TIAN Chong;  SU Dangsheng;  ZHANG Jinsong
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

JIAO Yilai YANG Zhenming CAO Xiaoming TIAN Chong SU Dangsheng ZHANG Jinsong. Preparation of silicalite–1 coating on SiC foam ceramics by support self–transformation. Chin J Mater Res, 2009, 23(5): 458-465.

Download:  PDF(1461KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Silicalite–1 coating on SiC foam ceramic was prepared by support self–transformation method using the residual silicon as silicon source. Silicalite–1/SiC foam composite with a specific surface area of 36 m2g−1 and homogeneous coverage and good thermal mechanical stability and good heat shock stability was fabricated on the SiC foam supports with a residual silicon amount of 16.7%. The influences of residual silicon amount in the supports, synthesis time and composition of the synthesis solution on the loading and morphology of the zeolite layer were investigated. It is found that the residual silicon amount is the key parameter to zeolite crystallization. Zeolite nucleus can not form on the SiC foam ceramic supports with too low amount of residual silicon, but can form on the residual silicon first when the amount is too high, which will make the zeolite crystal detached from the support during the subsequent silicon dissolution. In addition, increasing the template concentration can promote zeolite nucleation and
reduce the size of zeolite crystals.

Key words:  inorganic non–metallic materials      composites      support self–transformation      SiC foam      silicalite–1 zeolite     
Received:  04 May 2009     
ZTFLH: 

TB321

 
Fund: 

Supported by National High–Tech Research and Development Program of China No.2007AA030205.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I5/458

1 J.Weitkamp, Zeolites and catalysis, Solid State Ionics, 131(1–2), 175(2000)
2 J.Coronas, J.Santamaria, The use of zeolite films in small–scale and micro–scale applications, Chemical Engineering Science, 59(22–23), 4879(2004)
3 J.E.Antia, R.Govind, Applications of binderless zeolite–coated monolithic reactors, Applied Catalysis A: General, 131(1), 107(1995)
4 M.V.Twigg, J.T.Richardson, Fundamentals and applications of structured ceramic foam catalysts, Industrial & Engineering Chemistry Research, 46(12), 4166(2007)
5 M.Lacroix, M.Lacroix, P.Nguyen, D.Schweich, C.Pham–Huu, S.Savin–Poncet, Pressure drop measurements and modeling on SiC foams, Chemical Engineering Science, 62(12), 3259(2007)
6 G.Incera Garrido, F.C.Patcas, S.Lang, B.Kraushaar–Czarnetzki, Mass transfer and pressure drop in ceramic foams: A description for different pore sizes and porosities, Chemical Engineering Science, 63(21), 5202(2008)
7 F.C.Patcas, G.I.Garrido, B.Kraushaar–Czarnetzki, CO oxidation over structured carriers: A comparison of ceramic foams, honeycombs and beads, Chemical Engineering Science, 62(15), 3984(2007)
8 F.C.Buciuman, B.Kraushaar–Czarnetzki, Preparation and characterization of ceramic foam supported nanocrystalline zeolite catalysts, Catalysis Today, 69(1–4), 337(2001)
9 G.B.F.Seijger, O.L.Oudshoorn, W.E.J.van Kooten, J.C.Jansen, H.van Bekkum, C.M.van den Bleek, H.P.A.Calis, In situ synthesis of binderless ZSM–5  zeolitic coatings on ceramic foam supports, Microporous and Mesoporous Materials, 39(1–2), 195(2000)
10 G.Win´e, J.P.Tessonnier, S.Rigolet, C.Marichal, M.J.Ledoux, C.Pham–Huua, Beta zeolite supported on a β–SiC foam monolith: A diffusionless catalyst for fixed–bed Friedel–Crafts reactions, Journal of Molecular Catalysis A: Chemical, 248(1–2), 113(2006)
11 M.Rauscher, T.Selvam, W.Schwieger, D.Freude, Hydrothermal transformation of porous glass granules into ZSM–5 granules, Microporous and Mesoporous Materials, 75(3), 195(2004)
12 A.Zampieri, S.Kullmann, T.Selvam, J.Bauer, W.Schwieger, H.Sieber, T.Fey, P.Greil, Bioinspired rattan–derived SiSiC/zeolite monoliths: Preparation and Characterisation, Microporous and Mesoporous Materials, 90(1–3), 162(2006)
13 Y.Y.Wang, G.Q.Jin, X.Y.Guo, Growth of ZSM–5 coating on biomorphic porous silicon carbide derived from durra, Microporous and Mesoporous Materials, 118(1–3), 302(2009)
14 W.Wei, X.M.Cao, C.Tian, J.S.Zhang, The influence of Si distribution and content on the thermoelectric properties of SiC foam ceramics, Microporous and Mesoporous Materials, 112(1–3), 521(2008)
15 J.M.Zamaro, M.A.Ulla, E.E.Mir´o, Zeolite washcoating onto cordierite honeycomb reactors for environmental applications, Chemical Engineering Journal, 106(1), 25(2005)
16 H.Katsuki, S.Furuta, Formation of novel ZSM–5/porous mullite composite from sintered kaolin honeycomb by hydrothermal reaction, Journal of the American Ceramic Society, 83(5), 1093(2000)

 

[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] WAN Wei, CAO Xiaoming, ZHANG Jinsong. Erosion Performance for Co-continuous Phase Composite of SiC Foam Ceramic/Ductile Iron[J]. 材料研究学报, 2020, 34(5): 361-367.
No Suggested Reading articles found!