Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (5): 449-457    DOI:
论文 Current Issue | Archive | Adv Search |
Approach to quantum dot solar cells
PENG Yingcai1 ;  FU Guangsheng2
1.College of Electronic and Informational Engineering; Hebei University; Baoding 071002
2.College of Physical Science and Technology; Hebei University; Baoding 071002  
Cite this article: 

PENG Yingcai FU Guangsheng. Approach to quantum dot solar cells. Chin J Mater Res, 2009, 23(5): 449-457.

Download:  PDF(1239KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The importance and physical conception to achieve quantum dot solar cells are expounded, and the photovoltaic performances of two configuration quantum dot solar cells are described, such as p–i–n quantum dot solar cells and quantum dot–sensitized solar cells. The multiple exciton generation in various quantum dots based on impact ionization and their studied progress are reviewed. Finally, some technology strategy to design and fabricate quantum dot solar cells was proposed. It can be predicated that the achievement of the quantum dot solar cells with ultrahigh energy conversion efficiency, low fabricated cost and high stability shall create revolutionary influence for futural photovoltaic technology and industry.

Key words:  inorganic non--metallic materials      quantum dot structures      reviews      multiple exciton generation      solar cells      technology strategy     
Received:  20 March 2009     
ZTFLH: 

TB321

 
Fund: 

Supported by Natural Science Foundation of Hebei Province No.E2008000626.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I5/449

1 J.K.Rath, Low temperature polycrytalline silicon: a review on deposition, physical properties and solar cell applications, Solar Energy Materials & Solar Cells, 76, 431(2003)
2 LI Ligui, LU Guanghao, YANG Xiaoniu, ZHOU Enle, Progress of polymer solar cells, Chinese Science Bulletin 51(21), 2457(2006)
(黎立桂, 鲁广昊, 杨小牛, 周恩乐, 聚合物太阳电池研究进展, 科学通报,  51(21), 2457(2006))
3 HE Yuliang, DING Jianning, PENG Yingcai, GAO Xiaoni, New aspects of silicon thin–film solar cells, Chinese J. Physics, 37(12), 862(2008)
(何宇亮, 丁建宁, 彭英才, 高晓妮,  对硅薄膜型太阳电池的一些思考, 物理,  37(12), 862(2008))
4 M.Gr¨atzl, Solar energy conversion by dye–sensitized photovoltaic cell, Inorganic Chemistry, 44(20), 6841(2005)
5 V.Popescu, G.Bester, M.C.Hanna, A.G.Norman, A.Zunger, Theoretical and experimental examination of the intermediate–band concept for strain–balanced (In, Ga) As/Ga(As, P) quantum dot solar cells, Phys. Rev., 78(20), 205321(2008)
6 M.C.Hanna, A.J.Nozik, Solar conversion efficiency of photovolatic and photoelectrolysis cells with carrier multiplication absorbers, J. Appl. Phys., 100(7), 074510(2006)
7 A.J.Nozik, Quantum dot solar cells, Physica, E14, 115(2002)
8 T.Trupke, M.A.Green, P.W¨urfel, Improving solar cell efficienciens by down–conversion of high– energy photons, J. Appl. Phys., 92(3), 1668(2002)
9 R.D.Schaller, V.I.Klimov, High efficiency carrier multiplication in PbSe nanocrystals, Implications for solar energy conversion, Phys. Rev. Lett., 92(18), 186601(2004)
10 V.Aroutiounian, S.Petrosyan, A.Khachatryan, A.Khachatryan, K.Touryan, Quantum dot solar cells, J. Appl. Phys., 89(4), 2268(2001)
11 G.D.Wei, S.R.Forrest, Intermediate–band solar cells employing quantum dots embedded in an energy fence barrier, Nano Lett., 7(1), 218(2007)
12 A.Marti, N.Lopez, E.Antolin, E.Canovas, A.Luque, C.R.Stanley, Emitter degradation in quantum dot intermediate band solar cells, Appl. Phys. Lett., 90(23), 233510(2007)
13 R.B.Laghumavarapu, M.El–Emawy, N.Nuntawong, A.Moscho, L.F.Lester, D.L. Huffaker, Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers, Appl. Phys. Lett., 91(24), 243115(2007)
14 C.D.Cress, S.M.Hubbard, B.J.Landi, R.P.Raffaelle, D.M.Wilt, Quantum dot solar cell tolerance to alpha–particle irradiation, Appl. Phys. Lett., 91(18), 183108(2007)
15 R.B.Laghunavarapu, A.Moscho, A.Khoshakhlagh, M.E.Emawy, L.F.Lester, D.L.huffaker, GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response, Appl. Phys. Lett., 90(17), 173125(2007)
16 PENG Yingcai, S.Miyazaki, XU Jun, Chinese J. Vac. Sci. Technol., 29(4), 411(2009)
(彭英才, Miyazaki S, 徐 骏, TiO2纳米结构及其在染料敏化太阳电池中的应用, 真空科学与技术学报,   29(4), 411(2009))
17 S.C.Lin, Y.L.Lee, C.H.Chang, Y.J.Shen, Y.M.Yang, Quantum dot sensitized solar cells: assembled monolayer and chemical bath deposition, Appl. Phys. Lett., 90(14), 143517(2007)
18 C.H.Chang, Y.L.Lee, Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum dot sensitized solar cells, Appl. Phys. Lett., 91(5), 053503(2007)
19 Y.J.Shen, Y.L.Lee, Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot sensitized solar cell applications, Nanotechnology, 19, 045602(2008)
20 L.J.Diguna, Q.Shen, J.Kobayashi, T.Toyoda, High efficiency of CdSe quantum dot sensitized TiO2 inverse opal solar cells, Appl. Phys. Lett., 91(2), 023116(2007)
21 Q.Shen, D.Arae, T.Toyoda, Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates, Photochemistry and Photobiology A: Chemistry, 164, 75(2004)
22 K.S.Leschkies, R.Divakar, J.Basu, E.E.Pommer, J.E.Boercker, C.B.Carter, Photosensiti– zation of ZnO nanowires with CdSe quantum dots for photovoltaic devices, Nano lett., 7, 1793(2007)
23 R.Loef, A.J.Houtepen, E.Talgorn, J.Schoonman, A.Goossens, Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells, Nano Lett., 9(2), 856(2009)
24 G.Allan, C.Delerue, Role of impact ionization in multiple exciton generation in PbSe nanocrystals, Phys. Rev., B73(20), 205423(2006)
25 V.I.Rupasov, V.I.Klimov, Carrier multiplication in semiconductor nanocrystals via intraband optical transitions involving virtual biexciton states, Phys. Rev., B76(12), 125321(2007)
26 R.D.Schaller, M.Sykora, V.I.Klimov, J.M.Pietrya, Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers, Nano Lett., 6(3), 424(2006)
27 R.J.Ellingson, M.C.Bead, J.C.Johnson, P.R.Yu, O.I.Micic,A.J.Nozik, Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots, Nano Lett., 5(5), 865(2005)
28 A.Shabaev, A.L.Efros, A.J.Nozik, Multiexciton generation by a single photon in nanocrystals, Nano Lett., 6(12), 2856(2006)
29 J.E.Murphy, M.C.Beard, A.J.Nozik, A.G.Norman, S.P.Ahrenkiel, PbTe colloidal nanocrystals: Synthesis, characterization and multiple exciton generation, J.Am. Chem. Soc., 128(10), 3241(2006)
30 M.Califano, A.Zunger, A.Franceschetti, Direct carrier multiplication due to inverse auger scattering in CdSe quantum dots, Appl. Phys. Lett., 84(13), 2409(2004)
31 R.D.Schaller, V.M.Agranovich, V.I.Klimov, High–efficiency carrier multiplication through direct photogeneration of mulitiexcitons via virtual single–exciton states, Nature Physics, 1, 189(2005)
32 M.C.Beard, K.P.Knutsen, P.Yu, J.M.Luther, Q.Songet, W.K.Metzger, A.J.Nozik, Multiple exciton generation in colloidal silicon  anocrystals, Nano Lett., 7(8), 2506(2007)
33 D.Timmerman, I.Izeddin, P.Stallinga, I.N.Yassievich, T.Gregorkiewicz, Space–separated quantum cutting with silicon nanocrystals for photovoltaic applications, Natrue Photonics, 2, 105(2008)
34 PENG Yingcai, ZHAO Xinwei, FU Guangsheng, Progress of Si–based nanometer luminescent materials, Chinese Science Bulletin, 47(10), 721(2002)
(彭英才, Zhao X W, 傅广生, Si基纳米发光材料的研究进展, 科学通报,  47(10), 721(2002))
35 M.Sykora, M.A.Petruska, J.A.Aceved, J.A.Acevedo, I.Bezel, T.J.Meyer, V.I.klimov, Photoinduced charge transfer between CdSe  anocrystal quantum dots and Ru–polypyridine complexes, J. Am. Chem. Soc., 128(31), 9984(2006)
36 PENG Yingcai, ZHAO Xinwei, FU Guangsheng, Self–assembled growth of ordered Si–based nanometer luminescent materials, Chinese J. Materials Research, 18(5), 449(2004)
(彭英才, Zhao X W, 傅广生, 晶粒有序Si基纳米发光材料的自组织化生长, 材料研究学报, 18(5), 449(2004))
37 ZHANG Lide, MU Jimei, Nanometer Materials and Nanometer Structures (Beijing, The Press of Science, 2002) p.124
(张立德, 牟季美,   纳米材料与纳米结构 (北京, 科学出版社, 2002) p.124)
38 WANG Zhanguo, CHEN Yonghai, YE Xiaoling, Nanometer Semiconductor Technology (Beijing, The Press of Chemical Industry, 2006) p.66
(王占国, 陈涌海, 叶小玲,   纳米半导体技术 (北京, 化学工业出版社, 2006) p.66)
39 D.L.Nika, E.P.Pokatilov, Q.Shav, A.A.Balandin, Charge–carrier states and light absorption in ordered quantum dot superlattices, Phys. Rev., B76(12), 125417(2007)
40 J.S.Sousa, J.A.K.Freire, G.A.Farias, Exciton escape in CdSe core–shell quantum dots: Implications for the development of nanocrystal solar cells, Phys. Rev., B76(15), 155317(2007)

[1] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[2] YANG Gaoyuan, XIANG Wenhao, LIU Dezheng, QU Junhao, LIANG Ying, LI Wangnan, XU Ke, ZHONG Jie, HUANG Fuzhi, CHEN Meihua, LIANG Guijie. Control of Morphology of SnO2 Nanorod Array by Hydrothermal Reaction Process[J]. 材料研究学报, 2021, 35(4): 293-301.
[3] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
[4] Guangping ZHANG,Menglin LI,Ximao WU,Chunhe LI,Xuemei LUO. Research Progress on Effect of Length Scale on Electrical Resistivity of Metals[J]. 材料研究学报, 2014, 28(2): 81-87.
[5] Liangqi OUYANG,Ming ZHAO,Daming ZHUANG,Rujun SUN,Li GUO,Xiaolong LI,Mingjie CAO. Influence of Annealing Temperature on Electric Properties of CuIn1-xGaxSe2 Thin Films[J]. 材料研究学报, 2014, 28(10): 745-750.
[6] XIE Min, ZHUANG Daming, LIU JiangGUO, LiSONG Jun. The Influence of Sulfurization Temperature on the Properties of Cu2ZnSnS4 Thin Films[J]. 材料研究学报, 2013, 27(2): 126-130.
[7] FENG Jie LU Jinqiang QIN Zhaoqian. Research Progress on Anti-icing Performance of Superhydrophobic Surfaces[J]. 材料研究学报, 2012, 26(4): 337-343.
[8] DONG Wei WANG Qiang PENG Xu TAN Yi JIANG Dachuan LI Guobin. Aluminum Evaporation from Metallurgical Silicon in Electron Beam Melting Process[J]. 材料研究学报, 2010, 24(6): 592-596.
[9] TIAN Xiao JIA Qing CUI Yuyou YANG Rui. Thermal Decomposition and Crystallization of Precursor Sol for Preparing Oxidation Resistant Coatings on Intermetallic TiAl[J]. 材料研究学报, 2010, 24(5): 483-486.
[10] LI Li WANG Kuanling LI Jiabo ZHANG Wenjie. Effect of Hydrochloric Acid Modification of NaZSM--5 Zeolite on the Properties of TiO2/ZSM--5 Photocatalyst[J]. 材料研究学报, 2010, 24(5): 535-539.
[11] LIAN Xiaonan CHEN Mingcai XU Kai . Preparation of magnesium hydroxide nanoparticles in silicone oil/water mixture[J]. 材料研究学报, 2009, 23(6): 663-667.
[12] ZHU Yuankun ZHU Jiaqi HAN Jiecai LIANG Jun ZHANG Yuanchun. High–temperature thermal stability research on SiC thin films by magnetron sputtering[J]. 材料研究学报, 2009, 23(4): 410-414.
[13] XU Yue ZHANG Tong LI Liuan LI Hongdong LU Xianyi JIN Zengsun. Analysis of residual stress and micro--stress in free--standing boron--doped polycrystalline diamond films by XRD[J]. 材料研究学报, 2009, 23(3): 264-268.
[14] SONG Bing CHENG Ke WU Chao DU Zuliang. Synthesis and their optical characterizations of CdS quantum dots[J]. 材料研究学报, 2009, 23(1): 89-92.
[15] SHI Zhengyu; LI Mei; ZHAO Yan; LU Qianghua. Advance of smart surfaces with controllable wettability[J]. 材料研究学报, 2008, 22(6): 561-571.
No Suggested Reading articles found!