Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (11): 870-880    DOI: 10.11901/1005.3093.2024.491
ARTICLES Current Issue | Archive | Adv Search |
Effect of Thermo-mechanical Treatment on Microstructure and Properties of Medium-entropy Alloy Al8(CoCrNi)92 Prepared by Selective Laser Melting
ZHANG Zhengtong, WU Yuanhui, QIU Yingkun, TU Jian()
College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
Cite this article: 

ZHANG Zhengtong, WU Yuanhui, QIU Yingkun, TU Jian. Effect of Thermo-mechanical Treatment on Microstructure and Properties of Medium-entropy Alloy Al8(CoCrNi)92 Prepared by Selective Laser Melting. Chinese Journal of Materials Research, 2025, 39(11): 870-880.

Download:  HTML  PDF(30277KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Selective laser melting (SLM) offers a novel pathway for fabricating medium-entropy alloys (MEAs), yet the process inherently introduces defects such as porosity and microcracks, which are challenging to eliminate solely through subsequent heat treatment. Herein, the influence of various post-processing treatments on the microstructure and hardness of an Al8(CoCrNi)92 MEA was assessed. It was found that the as-printed alloy exhibits a typical columnar grain structure with cellular dislocation structure. While subsequent heat treatment alone induced a certain degree of recrystallization, its effect on mitigating macroscopic defects was minimal. In contrast, thermomechanical processing significantly refined the microstructure, nearly eliminated entirely the pores and microcracks, and induced the formation of a heterogeneous multiphase structure, consequently leading to a substantial enhancement in hardness. This research demonstrates that thermomechanical processing, as an effective post-processing route, can optimize the microstructure of SLM-fabricated MEAs, alleviate inherent defects related with the additive manufacturing technique, and markedly improve their mechanical properties.

Key words:  metallic materials      selective laser melting      thermomechanical treatment      heterogeneous microstructure     
Received:  12 December 2024     
ZTFLH:  TG139  
Fund: Chongqing University of Technology Graduate Innovation Project(gzlcx20233008)
Corresponding Authors:  TU Jian, Tel: (023)62563178, E-mail: tujian@cqut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.491     OR     https://www.cjmr.org/EN/Y2025/V39/I11/870

Fig.1  Schematic diagram of Al8(CoCrNi)92 SLM process (a) printing powders, (b) printing strategy, (c) post-processing
Fig.2  ECCI maps of as-printed sample (a) and as-deformed sample (b)
Fig.3  EBSD maps of as-printed sample (a) and as-deformed sample (b)
Fig.4  ECCI maps of the heat-treatment samples (a) S0, (b) S1000, (c) S1300
Fig.5  EBSD maps of heat-treatment samples (a) S0, (b) S1000, (c) S1300. (a1-c1) inverse pole figure (IPF), (a2-c2) grains boundary (GB) maps, (a3-c3) kernel average misorientation (KAM) maps, (a4-c4) grain orientation spread (GOS) maps
Fig.6  ECCI maps of thermo-mechanical treatment samples (a) RS0, (b) RS1000, (c) RS1300
Fig.7  EBSD maps of thermo-mechanical treatment samples (a) RS0, (b) RS1000, (c) RS1300. (a1-c1) IPF, (a2-c2) GB maps, (a3-c3) KAM maps, (a4-c4) GOS maps
Fig.8  EDS maps of thermo-mechanical treatment samples (a) RS0, (b) RS1000, (c) RS1300
Fig.9  XRD patterns of Al8(CoCrNi)92 samples with different post-treatment processes
Fig.10  Microhardness of Al8(CoCrNi)92 samples with different post-treatment processes
Fig.11  Nanoindentation results of Al8(CoCrNi)92 samples with different post-treatment processes (a) nanoindentation morphology, (b, c) indentation load-displacement (F-h) curve at Fmax of 5000 mN of heat treatment samples (b) and thermo-mechanical treatment samples (c), (d) bar chart of nanoindentation hardness and Er histogram
Fig.12  Schematic illustrations of microstructure evolution of Al8(CoCrNi)92 samples after different post-processing
[1] Filho F D C G, Ritchie R O, Meyers M A, et al. Cantor-derived medium-entropy alloys: bridging the gap between traditional metallic and high-entropy alloys [J]. J. Mater. Res. Technol., 2022, 17: 1868
[2] Yang Y, Chen T Y, Tan L Z, et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy [J]. Nature, 2021, 595(7866): 245
[3] Liu G, Chen P, Yao X Y, et al. Properties of CrMoTi medimum-entropy alloy and its in situ alloying additive manufacturing [J]. Acta Metall. Sin., 2022, 58: 1055
刘 广, 陈 鹏, 姚锡禹 等. CrMoTi中熵合金的性能及其原位合金化增材制造 [J]. 金属学报, 2022, 58: 1055
[4] Shi C, Du Y H, Lai L M, et al. Mechanical properties and oxidation resistance of a refractory medium-entropy alloy CrTaTi [J]. Chin. J. Mater. Res., 2023, 37(6): 443
史 畅, 杜宇航, 赖利民 等. CrTaTi难熔中熵合金的力学性能和抗氧化性能 [J]. 材料研究学报, 2023, 37(6): 443
[5] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
[6] Liu G, Zhang X F, Chen X L, et al. Additive manufacturing of structural materials [J]. Mater. Sci. Eng., 2021, 145R: 100596
[7] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
[8] Yi M L, Tu J, Yang L, et al. Microstructural mechanisms endowing high strength-ductility synergy in CoCrNi medium entropy alloy prepared by laser powder bed fusion [J]. Addit. Manuf., 2024, 87: 104229
[9] Pan C L, Li X Q, Luo H, et al. Tuning the strength and ductility balance of a Co32Cr36Ni32 medium entropy alloy fabricated by selective laser melting: effect of segregations along grain boundaries [J]. Mater. Sci. Eng., 2022, 840A: 142923
[10] Yasa E. Selective laser melting: principles and surface quality [A]. PouJ, RiveiroA, DavimJP. Additive Manufacturing [M]. Amsterdam: Elsevier, 2021: 77
[11] Lan L W, Wang W X, Cui Z Q, et al. Unique duplex microstructure and porosity effect on mechanical properties of AlCoCrFeNi2.1 eutectic high-entropy alloys processed by selective laser melting [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 1465
[12] Cunningham R, Nicolas A, Madsen J, et al. Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V [J]. Mater. Res. Lett., 2017, 5(7): 516
[13] Anamu U S, Ayodele O O, Olorundaisi E, et al. Fundamental design strategies for advancing the development of high entropy alloys for thermo-mechanical application: a critical review [J]. J. Mater. Res. Technol., 2023, 27: 4833
[14] Zhao X J, Deng S, Li J F, et al. Improving mechanical properties of an additively manufactured high-entropy alloy via post thermomechanical treatment [J]. J. Alloy. Compd., 2024, 984: 173955
[15] Wang Y L, Chan K C. A super strong high entropy alloy with discontinuous precipitation and fine grains by additive manufacturing and thermomechanical treatment [J]. Mater. Sci. Eng., 2023, 876A: 145164
[16] Lee D, Agustianingrum M P, Park N, et al. Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy [J]. J. Alloy. Compd., 2019, 800: 372
[17] Qu M, Liu L, Cui Y, et al. Interfacial morphology evolution in directionally solidified Al-1.5%Cu alloy [J]. Trans. Nonferrous Met. Soc. China, 2015, 25(2): 405
[18] Kurian S, Mirzaeifar R. Selective laser melting of aluminum Nano-powder particles, a molecular dynamics study [J]. Addit. Manuf., 2020, 35: 101272
[19] Lee J, Park H, Son S, et al. Strong yet strain-hardenable equiatomic CoCrFeMnNi high-entropy alloys by dynamic heterostructuring [J]. J. Alloy. Compd., 2023, 965: 171469
[20] Verma V, Belcher C H, Apelian D, et al. Diffusion in high entropy alloy systems-a review [J]. Prog. Mater. Sci., 2024, 142: 101245
[21] Sathiyamoorthi P, Asghari-Rad P, Park J M, et al. Exceptional cryogenic strength-ductility synergy in Al0.3CoCrNi medium-entropy alloy through heterogeneous grain structure and Nano-scale precipitates [J]. Mater. Sci. Eng., 2019, 766A: 138372
[22] Sathiyamoorthi P, Park J M, Moon J, et al. Achieving high strength and high ductility in Al0.3CoCrNi medium-entropy alloy through multi-phase hierarchical microstructure [J]. Materialia, 2019, 8: 100442
[23] Charkhchian J, Zarei-Hanzaki A, Moshiri A, et al. Unraveling the formation of L12 Nano-precipitates within the FCC-phase in AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Vacuum, 2024, 221: 112919
[24] Wu J P, Lin Y, Duan F H, et al. Unexpected creep behavior in a rejuvenated metallic glass [J]. J. Mater. Sci. Technol., 2023, 163: 140
[25] Tao K, Li F C, Liu Y H, et al. Unraveling the microstructural heterogeneity and plasticity of Zr50Cu40Al10 bulk metallic glass by nanoindentation [J]. Int. J. Plast., 2022, 154: 103305
[26] Chen L, Wang H, An X G, et al. Recovery, recrystallization and precipitation behavior in an ATF FeCrAl alloy during annealing treatment [J]. Mater. Charact., 2022, 190: 112026
[27] Tucho W M, Cuvillier P, Sjolyst-Kverneland A, et al. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment [J]. Mater. Sci. Eng., 2017, 689A: 220
[28] Wu X L, Zhu Y T. Heterogeneous materials: a new class of materials with unprecedented mechanical properties [A]. WuX L, ZhuY T. Heterostructured Materials [M]. New York: Jenny Stanford Publishing, 2021
[29] Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7(10): 393
[30] Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115(28): 7224
[31] Pande C S, Cooper K P. Nanomechanics of Hall-Petch relationship in nanocrystalline materials [J]. Prog. Mater. Sci., 2009, 54: 689
[1] YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
No Suggested Reading articles found!