Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (10): 777-790    DOI: 10.11901/1005.3093.2024.482
ARTICLES Current Issue | Archive | Adv Search |
Preparation of NH2-UiO-66/BiOBr Heterojunction Photocatalyst and Its Degradation Performance for Ofloxacin
REN Xuechang(), PANG Xuchuang, LU Zerui, CHEN Hongjin, JU Hongbin, ZHANG Guanguo, LI Zhongshan
School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Cite this article: 

REN Xuechang, PANG Xuchuang, LU Zerui, CHEN Hongjin, JU Hongbin, ZHANG Guanguo, LI Zhongshan. Preparation of NH2-UiO-66/BiOBr Heterojunction Photocatalyst and Its Degradation Performance for Ofloxacin. Chinese Journal of Materials Research, 2025, 39(10): 777-790.

Download:  HTML  PDF(11494KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The NH2-UiO-66/BiOBr heterojunction photocatalyst was synthesized via a solvothermal method, and its physicochemical properties were systematically characterized using XRD, SEM, TEM, FT-IR, XPS, and UV-Vis spectroscopy. The results confirmed the formation of a stable Z-scheme heterojunction structure between NH2-UiO-66 and BiOBr, which significantly improved the separation and migration efficiency of photogenerated electron-hole pairs. Under the irradiation of an artificial sunlight, the NUB-1 composite (mass ratio 1∶1) achieved a remarkable 92.48% degradation rate for ofloxacin (OFX), significantly outperforming the performance of either of the two components. NUB-1 also exhibited broad pH adaptability and showed minimal sensitivity to inorganic anions. Photoelectrochemical analyses indicated that NUB-1 exhibited superior charge separation and transport capabilities. Results of reactive species trapping tests and ESR analysis confirmed that holes (h+) and superoxide radicals (•O2-) were the main active species. Furthermore, NUB-1 showed high degradation efficiency for various organic pollutants. After five cycles, the degradation rate remained at 82.11%, demonstrating exceptional stability and reusability.

Key words:  metallic materials      NH2-UiO-66      heterojunction      photocatalysis      ofloxacin     
Received:  09 December 2024     
ZTFLH:  TB31  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.482     OR     https://www.cjmr.org/EN/Y2025/V39/I10/777

Fig.1  Standard curve of OFX
Fig.2  XRD patterns of NH2-UiO-66, BiOBr, and NH2-UiO-66/BiOBr composites with different ratios
Fig.3  FT-IR spectra of NH2-UiO-66, BiOBr and NUB-1 composite
Fig.4  SEM image of NH2-UiO-66 (a), BiOBr (b) and NUB-1 (c), and EDS elemental mapping images of NUB-1 for C (d), N (e), O (f), Br (g), Zr (h), Bi (i)
Fig.5  TEM images of NUB-1 (a) low magnification, (b) high magnification, (c) HRTEM image
Fig.6  XPS survey spectrum of NUB-1 (a) and high-resolution XPS spectra of C 1s (b), N 1s (c), O 1s (d), Zr 3d (e) and Bi 4f (f)
Fig.7  N2 adsorption-desorption isotherms (a) and pore size distribution of NH2-UiO-66 (b), BiOBr (c) and NUB-1 (d)
Fig.8  UV-Vis diffuse reflectance spectra (a), Tauc plots of different samples (b-d), and Mott-Schottky plots of NH2-UiO-66 (e) and BiOBr (f)
Fig.9  Transient photocurrent response (a), EIS (b) and PL (c)
Fig.10  Photocatalytic degradation curves (a) and reaction rate constant (b) of ofloxacin over materials with different composite ratios
Fig.11  Degradation curves (a) and reaction rate constants (b) of NUB-1 with different dosages
Fig.12  Effect of pH on OFX degradation (a) and reaction rate constant (b)
Fig.13  Effect of inorganic anion on OFX degradation (a) and reaction rate constant (b)
Fig.14  Cycle stability of NUB-1 sample
Fig.15  Degradation curves of NUB-1 to different pollutants
Fig.16  Experiment of capture of active species
Fig.17  ESR spectra of DMPO-•O2- (a), TMEPO-h+ (b), DMPO-•OH (c), and TMEPO-1O2 (d)
Fig.18  Mechanism of the photocatalytic degradation of OFX by the NH2-UiO-66/BiOBr Z-scheme heterojunction photocatalyst
[1] Yang J M, Tian S F, Song Z, et al. Recent advances in sorption-based photocatalytic materials for the degradation of antibiotics [J]. Coord. Chem. Rev., 2025, 523: 216257
[2] Liu L, Sun Z, Feng J J, et al. Potential of solar photodegradation of antibiotics in shallow ditches: Kinetics, the role of dissolved organic matter and prediction models [J]. Sci. Total Environ., 2024, 955: 176725
[3] Jia W L, Gao F Z, Song C, et al. Swine wastewater co-exposed with veterinary antibiotics enhanced the antibiotic resistance of endophytes in radish (Raphanus sativus L.) [J]. Environ. Pollut., 2024, 362: 125040
[4] Dhiman N. Continuous flow column adsorption and desorption for the study of interaction of fluoroquinolone antibiotic ofloxacin hydrochloride with ZnO and CuO nanometal oxides in aqueous solution: (Continuous column adsorption desorption) [J]. Waste Manage. Bull., 2024, 2(3): 43
[5] Liu J W, Shi J, Deng H P. Fe-O-Bi efficient electron transfer channels and photo-Fenton synergy in S-scheme heterojunctions: insights into interfacial interactions and ofloxacin degradation [J]. Green Energy Environ., 2025, 10: 1503
[6] Su R D, Zhu Y F, Gao B Y, et al. Progress on mechanism and efficacy of heterogeneous photocatalysis coupled oxidant activation as an advanced oxidation process for water decontamination [J]. Water Res., 2024, 251: 121119
[7] Zha Y, He X Y, Wang Y D, et al. Visible-light-response Fe-doped BiOCl microspheres with efficient photocatalysis-Fenton degradation of antibiotics [J]. J. Water Process. Eng., 2024, 67: 106225
[8] Zhu C Z, Hou J K, Wang X H, et al. Optimizing ligand-to-metal charge transfer in metal-organic frameworks to enhance photocatalytic performance [J]. Chem. Eng. J., 2024, 499: 156527
[9] Yusuf M, Kurzina I, Voronova G, et al. Trends in the energy and environmental applications of metal-organic framework-based materials [J]. Energy Adv., 2024, 3(9): 2079
[10] Yao Q, Li S Q, Ban J F, et al. Functionalized Zr-MOFs for Enhancing flame retardancy and smoke suppression performance on TPU [J]. ChemistrySelect, 2024, 9(23): e202401227
[11] Yu C, Zhang X J, Song C X, et al. Development of Ce-doped NH2-UiO-66(Zr) photocatalysts for efficient CO2 reduction in an aqueous system [J]. Chem. Eng. J., 2024, 499: 156088
[12] Hegazy S, Ghannami A, Dos Reis G S, et al. Activation and Zr precursor influence on UiO-66-NH2 composites for efficient cationic and anionic dye removal [J]. Chem. Eng. Sci., 2025, 302: 120785
[13] Bui T M N, Vo T K, Phuong N H Y, et al. Fe(III)-incorporated UiO-66(Zr)-NH2 frameworks: Microwave-assisted scalable production and their enhanced photo-Fenton degradation catalytic activities [J]. Sep. Purif. Technol., 2025, 355: 129723
[14] Fan W J, Chang H, Zheng X J, et al. Elaborate construction of a MOF-derived novel morphology Z-scheme ZnO/ZnCdS heterojunction for enhancing photocatalytic H2 evolution and tetracycline degradation [J]. Sep. Purif. Technol., 2025, 357: 130068
[15] Xu X M, Xi Z S, Zhao D F, et al. Regulating electron transfer between valence-variable cuprum and cerium sites within bimetallic metal-organic framework towards enhanced catalytic hydrogenation performance [J]. J. Colloid Interface Sci., 2025, 679: 1159
[16] Diaz N O, Rodríguez C A, Durán-Álvarez J C, et al. A theoretical and experimental approach for photocatalytic degradation of caffeic acid using BiOBr microspheres [J]. Mater. Sci. Eng., 2021, 273B: 115432
[17] Imam S S, Adnan R, Kaus N H M. The photocatalytic potential of BiOBr for wastewater treatment: A mini-review [J]. J. Environ. Chem. Eng., 2021, 9(4): 105404
[18] Meng L Y, Qu Y, Jing L Q. Recent advances in BiOBr-based photocatalysts for environmental remediation [J]. Chin. Chem. Lett., 2021, 32(11): 3265
[19] Song W D, Zhao J H, Xie X H, et al. Novel BiOBr by compositing low-cost biochar for efficient ciprofloxacin removal: the synergy of adsorption and photocatalysis on the degradation kinetics and mechanism insight [J]. RSC Adv., 2021, 11(25): 15369
[20] Guo Y X, Wen H, Zhong T, et al. Core-shell-like BiOBr@BiOBr homojunction for enhanced photocatalysis [J]. Colloids Surf., 2022, 644A: 128829
[21] Jiang H L, Wang Q, Chen P G, et al. Photocatalytic degradation of tetracycline by using a regenerable (Bi) BiOBr/rGO composite [J]. J. Cleaner Prod., 2022, 339: 130771
[22] Gao K X, Hou L A, An X Q, et al. BiOBr/MXene/gC3N4 Z-scheme heterostructure photocatalysts mediated by oxygen vacancies and MXene quantum dots for tetracycline degradation: Process, mechanism and toxicity analysis [J]. Appl. Catal., 2023, 323B: 122150
[23] Pan Y, Yuan X Z, Jiang L B, et al. Stable self-assembly AgI/UiO-66(NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight [J]. Chem. Eng. J., 2020, 384: 123310
[24] Ghorbani M, Nazar A R S, Frahadian M, et al. Fabrication of novel ZnO@BiOBr/UiO-66-NH2 core-shell heterojunction for improved tetracycline degradation [J]. Appl. Surf. Sci., 2023, 612: 155819
[25] Yang Z C, Li J, Cheng F X, et al. BiOBr/protonated graphitic C3N4 heterojunctions: Intimate interfaces by electrostatic interaction and enhanced photocatalytic activity [J]. J. Alloy. Compd., 2015, 634: 215
[26] Chen Q, He Q Q, Lv M M, et al. Selective adsorption of cationic dyes by UiO-66-NH2 [J]. Appl. Surf. Sci., 2015, 327: 77
[27] Fang X, Wu S B, Wu Y H, et al. High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: Dynamics, thermodynamics, and mechanisms [J]. Appl. Surf. Sci., 2020, 518: 146226
[28] Chankhanittha T, Johnson B, Bushby R J, et al. One-pot hydrothermal synthesis of g-C3N4/BiOBr/Bi2MoO6 as a Z-scheme heterojunction for efficient photocatalytic degradation of ciprofloxacin (CIP) antibiotic and Rhodamine B (RhB) dye [J]. J. Alloy. Compd., 2024, 1008: 176764
[29] Zhang R, Chen Z Y, Li Y, et al. A novel visible-light-induced double Z-scheme photocatalytic system: NH2-UiO-66/BiOBr/Bi2S3 for degradation of tetracycline hydrochloride and rhodamine B [J]. Colloids Surf., 2022, 649A: 129350
[30] Xu J M, Guo H L, Song J B, et al. Synthesis of NH2-UiO-66/Bi4O5I2 heterojunction for high tetracycline reduction under visible light [J]. Mater. Sci. Semicond. Process., 2024, 181: 108636
[31] Miao X S, Sun JW, Ma F, et al. Construction of Type-II Zn-SnO2/BiOBr heterojunctions with dual-oxygen vacancies for enhanced photocatalytic degradation [J]. Opt. Mater., 2024, 157: 116295
[32] Liu L, Li Y H, Wang K, et al. A novel persulfate activation strategy by double Z-scheme Bi2O3/CuBi2O4/BiOBr heterojunction: Non-radical dominated pathway for levofloxacin degradation [J]. J. Environ. Chem. Eng., 2024, 12(6): 114139
[33] Yang C D, Feng S, Ma C C, et al. Bi2Sn2O7/UiO-66-NH2 heterojunction photocatalyst simultaneously adsorbed and photodegraded tetracycline [J]. J. Environ. Chem. Eng., 2023, 11(3): 109664
[34] Wang F, He T, Gao Y N, et al. Z-scheme heterojunction Bi2MoO6/NH2-UiO-66(Zr/Ce) for efficient photocatalytic degradation of oxytetracycline: Pathways and mechanism [J]. Sep. Purif. Technol., 2023, 325: 124596
[35] Su Q, Li J, Wang B, et al. Direct Z-scheme Bi2MoO6/UiO-66-NH2 heterojunctions for enhanced photocatalytic degradation of ofloxacin and ciprofloxacin under visible light [J]. Appl. Catal., 2022, 318B: 121820
[36] Yuan Y X, Liao Q L, Zhao T X. Synthesis of UiO-66-NH2@PILs core-shell composites for CO2 conversion into cyclic carbonates via synergistic catalysis under solvent- and additive-free conditions [J]. Colloids Surf., 2025, 704A: 135492
[37] Landi S, Segundo I R, Freitas E, et al. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements [J]. Solid State Commun., 2022, 341: 114573
[38] Banyal R, Sonu S, Soni V, et al. Synergetic photocatalytic degradation of the tetracycline antibiotic over S-scheme based BiOBr/CuInS2/WO3 ternary heterojunction photocatalyst [J]. Solid State Sci., 2024, 157: 107700
[39] Zhu P F, Cao H Y, Yang H, et al. One-pot synthesis of Ni(Ⅱ)-doped UiO-66-NH2 for enhanced photocatalytic CO2 reduction to CO with efficient charge transfer [J]. Appl. Surf. Sci., 2024, 652: 159348
[40] Li N, Hua J, Chen F Y, et al. A novel 0D/3D Z-Scheme heterojunction ZnS/MIL-88(A) with significantly boosted photocatalytic activity toward tetracycline [J]. J. Phys. Chem. Solids, 2025, 196: 112372
[41] Tan C, Li Y Y, Wang H H, et al. Preparation of g-C3N4/Ag/TiO2 NTs and photocatalytic degradation of ceftazidine [J]. Chin. J. Mater. Res., 2022, 36(5): 392
谭 冲, 李媛媛, 王欢欢 等. g-C3N4/Ag/TiO2NTs的制备及其对西维因的光催化降解 [J]. 材料研究学报, 2022, 36(5): 392
[42] Chen X Y, Yao J J, Xia B, et al. Influence of pH and DO on the ofloxacin degradation in water by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cell: mechanism, ROSs contribution and power generation [J]. J. Hazard. Mater., 2020, 383: 121220
[43] Padhan P, Sethy A, Behera P K. Host-guest interaction between Ofloxacin-β-Cyclodextrin complexes in acidic and neutral pH: A fluorescence quenching study [J]. J. Photochem. Photobiol., 2017, 337: 165
[44] Qiang Z M, Adams C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics [J]. Water Res., 2004, 38(12): 2874
[45] Wei X X, Chen J W, Xie Q, et al. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin [J]. Environ. Sci. Technol., 2013, 47(9): 4284
[46] Xia B. Study on the influence of pH and DO inphotocatalytic fuel cell degrading ofloxacin [D]. Chongqing: Chongqing University, 2018
夏 彬. pH和DO对光催化燃料电池降解氧氟沙星影响研究 [D]. 重庆: 重庆大学, 2018
[47] Luo J J, Wu L S, Liu D, et al. Preparation of S-scheme heterojunction photocatalyst Y2O3/BiOCl and visible light degradation of ofloxacin: Photocatalytic mechanism, DFT calculation, degradation pathway, and toxicity evaluation [J]. J. Alloy. Compd., , 2025, 1010: 177888
[48] Yang Y, Ye J, Zhai Y, et al. ZIF-67-derived monolithic bimetallic sulfides as efficient persulfate activators for the degradation of ofloxacin [J]. Surf. Interfaces, 2024, 51: 104713
[49] Wei Y Q, Liu C Y, Li X X, et al. Construction of S-scheme BiOCl/Bi24O31Cl10 heterojunction by thermally induced in-situ phase transition strategy for photocatalytic degradation of ciprofloxacin [J]. J. Water Process. Eng., 2025, 69: 106795
[50] Luo J M, Bo S F, Qin Y N, et al. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation [J]. Chem. Eng. J., 2020, 395: 125063
[51] Zhang Q Y, Sun X Q, Dang Y, et al. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe2O4 synergistic catalysis for the efficient removal of levofloxacin [J]. J. Hazard. Mater., 2022, 424: 127651
[52] Huong V H, Nguyen V C, Pham K P, et al. Construction dual active sites on SnO2 via Fe doping for effective ciprofloxacin photodegradation [J]. J. Alloy. Compd., 2024, 1005: 176020
[53] Zhang Y, Zhou J B, Feng Q Q, et al. Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst [J]. Chemosphere, 2018, 212: 523
[54] Yang Z F, Xia X N, Shao L H, et al. Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: Mechanism insight, degradation pathways and DFT calculation [J]. Chem. Eng. J., 2021, 410: 128454
[55] Qi X M, Wu Q, Wang X J, et al. Design of UiO-66@BiOIO3 heterostructural composites with remarkable boosted photocatalytic activities in removing diverse industrial pollutants [J]. J. Phys. Chem. Solids, 2021, 151: 109903
[56] Piao C, Chen L, Liu Z Y, et al. Construction of solar light-driven dual Z-scheme Bi2MoO6/Bi2WO6\AgI\Ag photocatalyst for enhanced simultaneous degradation and conversion of nitrogenous organic pollutants [J]. Sep. Purif. Technol., 2021, 274: 119140
[57] Mengting Z, Duan L, Zhao Y, et al. Fabrication of the flower-like Z-scheme heterojunction photocatalyst Bi-BiOI/UiO 66 for enhanced photodegradation of acetaminophen in simulated wastewater [J]. J. Environ. Manage., 2024, 354: 120325
[58] Huang W G, Wang X Z, Zhang W T, et al. Intraligand charge transfer boosts visible-light-driven generation of singlet oxygen by metal-organic frameworks [J]. Appl. Catal., 2020, 273B: 119087
[59] Wang T Y, Zhao C, Meng L H, et al. In-situ-construction of BiOI/UiO-66 heterostructure via nanoplate-on-octahedron: A novel p-n heterojunction photocatalyst for efficient sulfadiazine elimination [J]. Chem. Eng. J., 2023, 451: 138624
[60] Ren J W, Lv S, Wang S Q, et al. Construction of efficient g-C3N4/NH2-UiO-66 (Zr) heterojunction photocatalysts for wastewater purification [J]. Sep. Purif. Technol., 2021, 274: 118973
[1] YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] WANG Binglin, CHAI Yifeng, TAN Shengxia, GUO Shengwei, JIANG Ru, ZHU Zhonghua, ZHANG Yutao, HUANG Guifang, HUANG Weiqing. Construction and Photocatalytic Performance Study of g-C3N4/CdS S-scheme Heterojunction[J]. 材料研究学报, 2025, 39(9): 712-720.
[5] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[6] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[7] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[8] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[9] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[10] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[11] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[12] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[13] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[14] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[15] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
No Suggested Reading articles found!