Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (10): 791-800    DOI: 10.11901/1005.3093.2024.463
ARTICLES Current Issue | Archive | Adv Search |
Effect of Hot Isostatic Pressing on Notch Sensitivity of Ti-6Al-4V Ti-alloy Prepared by Selective Laser Melting
ZANG Tao1, YANG Pengfei1(), ZHAO Yuan1(), GAO Ying1, E Shiju1, LIU Yang2, QI Shanhe3, ZHANG Ye3, ZHANG Jiazhen3
1 College of Engineering, Zhejiang Normal University, Jinhua 321004, China
2 School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
3 Beijing Aeronautical Science and Technology Research Institute of COMAC, Beijing 102200, China
Cite this article: 

ZANG Tao, YANG Pengfei, ZHAO Yuan, GAO Ying, E Shiju, LIU Yang, QI Shanhe, ZHANG Ye, ZHANG Jiazhen. Effect of Hot Isostatic Pressing on Notch Sensitivity of Ti-6Al-4V Ti-alloy Prepared by Selective Laser Melting. Chinese Journal of Materials Research, 2025, 39(10): 791-800.

Download:  HTML  PDF(29024KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The block Ti-6Al-4V alloy was fabricated by selective laser melting (SLM) and then subjected to hot isostatic pressing (HIP) treatment. Next, the influence of HIP on the high cycle fatigue performance of the alloy with notch (stress concentration factor Kt = 3) was assessed, while elucidating the mechanisms related with the high notch sensitivity of the SLM+HIP Ti-6Al-4V alloy. The results indicate that although the SLM+HIP Ti-6Al-4V alloy exhibits superior static tensile strength and hardness compared to wrought counterparts, its fatigue performance under notched conditions is significantly compromised, with the fatigue limit decreasing from 250 MPa (wrought) to 150 MPa. Further analysis reveals that the high notch sensitivity of the SLM+HIP Ti-6Al-4V alloy may mainly be attributed to two factors: (1) differences in crack initiation mechanisms, i.e., as the crack initiation region of SLM+HIP alloy exhibits cleavage-like brittle fracture morphology, distinctly different from the ductile fracture morphology of the forged alloy, leading to a higher propensity for brittle crack initiation; and (2) the influence of grain size characteristics, namely the SLM+HIP alloy exhibits a unique lath-like grain structure, with an overall larger grain size compared to the forged alloy. Specifically, the average grain size in the X and Z directions is 2.34 and 2.58 μm, respectively, which is significantly larger than 1.63 μm in the forged alloy. This increased grain size exacerbates its notch sensitivity, making cracks more prone to initiation and propagation during the fatigue process.

Key words:  metallic materials      fatigue performance      notch stress concentration      Ti-6Al-4V      selective laser melting      hot isostatic pressing     
Received:  25 November 2024     
ZTFLH:  TG115  
Fund: Zhejiang Provincial Natural Science Foundation(LQ22A020005)
Corresponding Authors:  YANG Pengfei, Tel: 15608083713, E-mail: yangpf@zjnu.edu.cn
ZHAO Yuan, Tel: 19846764664, E-mail: zhaoyuan@zjnu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.463     OR     https://www.cjmr.org/EN/Y2025/V39/I10/791

MaterialAlVOCNFeTi
Wrought6.004.070.1520.0160.0040.050Bal.
SLM+HIP6.114.050.080.010.010.11Bal.
Table 1  Composition of Ti-6Al-4V Alloy (mass fraction, %)
Fig.1  Dimensions of tensile (a) and fatigue (b) specimens, and experimental method (c)
Fig.2  Metallographic microstructure of Ti-6Al-4V alloy (a) wrought Ti-6Al-4V alloy, (b) HIP-X Ti-6Al-4V alloy, (c) HIP-Z Ti-6Al-4V alloy
Fig.3  Hardness of Ti-6Al-4V under different conditions
MaterialModulus / GPaStrength / MPaElongation / %
Wrought115 ± 3.6886 ± 1719 ± 2.4
HIP-X121 ± 6.31015 ± 8.718 ± 1.7
HIP-Z117 ± 8.51022 ± 5.716 ± 2.5
Table 2  Tensile mechanical properties of Ti-6Al-4V alloy under different processing conditions
Fig.4  Fatigue life S-N curves under different conditions
Fig.5  Tensile fracture morphology of Ti-6Al-4V alloy (a, b) wrought Ti-6Al-4V alloy, (c, d) HIP-X Ti-6Al-4V alloy, (e, f) HIP-Z Ti-6Al-4V alloy
Fig.6  Macro fracture morphology and microstructure at crack initiation site in fatigue specimens (a-c) wrought Ti-6Al-4V alloy, (d-f) HIP-X Ti-6Al-4V alloy, (g-i) HIP-Z Ti-6Al-4V alloy
Fig.7  Microstructure of fatigue crack propagation zone (a-c) wrought Ti-6Al-4V alloy, (d-f) HIP-X Ti-6Al-4V alloy, (g-i) HIP-Z Ti-6Al-4V alloy
Fig.8  Microstructure of fatigue instantaneous fracture zone (a) wrought Ti-6Al-4V alloy, (b) HIP-X Ti-6Al-4V alloy, (c) HIP-Z Ti-6Al-4V alloy
Fig.9  Grain structure (a-c) and size distribution (d-f) of Ti-6Al-4V under different processing conditions (a, d) wrought Ti-6Al-4V alloy, (b, e) HIP-X Ti-6Al-4V alloy, (c, f) HIP-Z Ti-6Al-4V alloy
Fig.10  Different crack initiation mechanisms of Ti-6Al-4V alloy (a, b) ductile fracture, (c, d) transgranular fracture, (e, f) intergranular fracture
Fig.11  Fracture modes of Ti-6Al-4V subjected to notch stress concentration (a-d) wrought, (e-i) SLM+HIP
[1] Zerbst U, Bruno G, Buffière J Y, et al. Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges [J]. Prog. Mater. Sci., 2021, 121: 100786
[2] Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review [J]. Prog. Mater. Sci., 2021, 117: 100724
[3] Yi M, Tang W, Zhu Y Q, et al. A holistic review on fatigue properties of additively manufactured metals [J]. J. Mater. Process. Technol., 2024, 329: 118425
[4] Lu B H, Li D C. Development of the additive manufacturing (3D Printing) technology [J]. Mech. Manuf. Autom., 2013, 42(4): 1
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化, 2013, 42(4): 1
[5] Neikter M, Åkerfeldt P, Pederson R, et al. Microstructural characterization and comparison of Ti-6Al-4V manufactured with different additive manufacturing processes [J]. Mater. Charact., 2018, 143: 68
[6] Ren Y M, Lin X, Huang W D, et al. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2017, 46(10): 3160
任永明, 林 鑫, 黄卫东 等. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展 [J]. 稀有金属材料与工程, 2017, 46(10): 3160
[7] Gorelik M. Additive manufacturing in the context of structural integrity [J]. Int. J. Fatigue, 2017, 94: 168
[8] Wu Z K, Wu S C, Zhang J, et al. Defect induced fatigue behaviors of selective laser melted Ti-6Al-4V via synchrotron radiation X-Ray tomography [J]. Acta Metall. Sin., 2019, 55: 811
吴正凯, 吴圣川, 张 杰 等. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为 [J]. 金属学报, 2019, 55: 811
[9] Cao X Z, Han X Q, Gai P T. Influences of surface integrity on fatigue property of Ti6Al4V alloy [J]. Aeronaut. Manuf. Technol., 2014, (14): 95
曹秀中, 韩秀全, 盖鹏涛. 表面完整性对Ti6Al4V钛合金疲劳性能的影响 [J]. 航空制造技术, 2014, (14): 95
[10] Becker T H, Kumar P, Ramamurty U. Fracture and fatigue in additively manufactured metals [J]. Acta Mater., 2021, 219: 117240
[11] Wang H, Gao Q. Influence of Notch Stress-concentration on the ultra-high-cycle fatigue behaviors of 40Cr steel [J]. Mater. Mechan. Eng., 2004, 28: 12
王 弘, 高 庆. 缺口应力集中对40Cr钢高周疲劳性能的影响 [J]. 机械工程材料, 2004, 28: 12
[12] Gates N, Fatemi A. Notch deformation and stress gradient effects in multiaxial fatigue [J]. Theor. Appl. Fract. Mech., 2016, 84: 3
[13] Schijve J. Stress gradients around notches [J]. Fatigue Fract. Eng. Mater. Struct., 1980, 3: 325
[14] Liao D, Zhu S P, Qing G A. Multiaxial fatigue analysis of notched components using combined critical plane and critical distance approach [J]. Int. J. Mech. Sci., 2019, 160: 38
[15] Kahlin M, Ansell H, Moverare J J. Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces [J]. Int. J. Fatigue, 2017, 101: 51
[16] Razavi N, Ferro P, Berto F, et al. Fatigue strength of blunt V-notched specimens produced by selective laser melting of Ti-6Al-4V [J]. Theor. Appl. Fract. Mech., 2018, 97: 376
[17] Vayssette B, Saintier N, Brugger C, et al. Numerical modelling of surface roughness effect on the fatigue behavior of Ti-6Al-4V obtained by additive manufacturing [J]. Int. J. Fatigue, 2019, 123: 138
[18] Benedetti M, Santus C. Notch fatigue and crack growth resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: A critical distance approach to defect sensitivity [J]. Int. J. Fatigue, 2019, 121: 281
[19] Razavi N, Askes H, Berto F, et al. Length scale parameters to estimate fatigue lifetime of 3D-printed titanium alloy Ti6Al4V containing notches in the as-manufactured condition [J]. Int. J. Fatigue, 2023, 167: 107348
[20] Li P, Warner D H, Pegues J W, et al. Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4V [J]. Int. J. Fatigue, 2019, 120: 342
[21] Tahri C, Chauveau T, Hocini A, et al. Impact of hot isostatic pressing treatments on the mechanical performance of EBMed Ti-6Al-4V alloy [J]. Mater. Charact., 2023, 201: 112962
[22] Zhao X L, Li S J, Zhang M, et al. Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting [J]. Mater. Des., 2016, 95: 21
[23] Gushchina M, Turichin G, Klimova-Korsmik O, et al. Features of heat treatment the Ti-6Al-4V GTD blades manufactured by DLD additive technology [J]. Materials (Basel), 2021, 14(15): 4159
[24] Günther J, Krewerth D, Lippmann T, et al. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime [J]. Int. J. Fatigue, 2017, 94: 236
[25] Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance [J]. Int. J. Fatigue, 2013, 48: 300
[26] Zhao S H, Yuan K B, Guo W G, et al. A comparative study of laser metal deposited and forged Ti-6Al-4V alloy: Uniaxial mechanical response and vibration fatigue properties [J]. Int. J. Fatigue, 2020, 136: 105629
[27] Hall E O. The deformation and ageing of mild steel: III discussion of results [J]. Proc. Phys. Soc. Sect., 1951, 64B: 747
[28] Petch N J. The cleavage strength of polycrystal [J]. J. Iron Steel Inst., 1953, 174: 25
[29] Chi W Q, Li G, Wang W J, et al. Interior initiation and early growth of very high cycle fatigue crack in an additively manufactured Ti-alloy [J]. Int. J. Fatigue, 2022, 160: 106862
[30] Hong Y S, Lei Z Q, Sun C Q, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels [J]. Int. J. Fatigue, 2014, 58: 144
[31] Dong N J, Wang K K, Wen J F, et al. Effects of post-processing and loading orientation on high-cycle fatigue of selective laser melted Ti-6Al-4V [J]. Int. J. Fatigue, 2024, 187: 108433
[32] Bache M R. Processing titanium alloys for optimum fatigue performance [J]. Int. J. Fatigue, 1999, 21(Suppl. 1): S105
[33] Neal D F, Blenkinsop P A. Internal fatigue origins in α-β titanium alloys [J]. Acta Metall., 1976, 24: 59
[1] YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
No Suggested Reading articles found!