Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (6): 437-445    DOI: 10.11901/1005.3093.2023.291
ARTICLES Current Issue | Archive | Adv Search |
Effect of Helium Ions Irradiation at High Temperature on Surface Morphology of Tungsten
CUI Yunqiu, NIU Chunjie, LV Jianhua, NI Weiyuan, LIU Dongping, LU Na()
School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

CUI Yunqiu, NIU Chunjie, LV Jianhua, NI Weiyuan, LIU Dongping, LU Na. Effect of Helium Ions Irradiation at High Temperature on Surface Morphology of Tungsten. Chinese Journal of Materials Research, 2024, 38(6): 437-445.

Download:  HTML  PDF(16325KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tungsten (W) is considered as one of the most promising plasma facing materials for fusion devices due to its excellent properties such as high melting point, high thermal conductivity, high sputtering threshold and low hydrogen isotope retention. In this study, high-purity tungsten blocks are irradiated by helium (He) ions at temperatures > 2000 K, and the effect of changes in irradiation parameters on the evolution of the W surface morphology is investigated. The results show that at 2300 K, the surface of the W samples shows a significant swelling morphology due to the growth of helium bubbles. As the ion fluence increases, the helium bubbles rupture, accompanied by the appearance of surface holes, and further surface swelling gradually develops into cross-linked coral-like tungsten nanofilament structures; With the increase of ion energy, the depth of helium ions injected into the W material increases, which promotes the growth of surface tungsten filament-like structures. When the temperature is changed from 2100 K to 2400 K, the temperature increase enhances the rapid diffusion of self-interstitial tungsten atoms on the surface, which leads to the suppression of the surface swelling and tungsten filament-like structure growth behavior, and even the degradation of the tungsten filament-like structure. The increase in both helium ion fluence and ion energy promotes the formation and evolution of tungsten filament-like structures on the surface of W materials after high-temperature He ion irradiation in the adopted range of experimental parameters, while the increase in temperature shows the opposite trend.

Key words:  metallic materials      tungsten      high temperature      He ions irradiation      surface morphology     
Received:  12 June 2023     
ZTFLH:  TG430.4  
Fund: National Key R&D Program of China(2017YFE0300106);the Fundamental Research Funds for the Central Universities(DUT20JC20);Dalian Science and Technology Star Project(2020RQ136);the Central Guidance on Local Science and Technology Development Fund of Liaoning Province(2022010055-JH6/1001);the Fundamental Research Funds for the Central Universities(DUT21RC(3)066)
Corresponding Authors:  LU Na, Tel: 15504256218, E-mail: luna@dlut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.291     OR     https://www.cjmr.org/EN/Y2024/V38/I6/437

Fig.1  Schematic of RF ICP ion source system
No.RF power / kWIon flux / m-2·sIon energy / eVIon fluence / m-2Irradiation time / sSurface temperature / KGas
1301.3 × 1023304.0 × 1024312300He
2301.3 × 1023301.0 × 1025772300He
3301.3 × 1023303.0 × 10252312300He
4301.3 × 1023305.0 × 10253852300He
5301.3 × 1023301.0 × 10267702300He
621.47.4 × 1022801.0 × 10251202300He
721.47.4 × 1022803.0 × 10253762300He
821.47.4 × 1022805.0 × 10256902300He
921.47.4 × 1022807.0 × 10259522300He
1021.47.4 × 1022801.0 × 102613602300He
1121.47.4 × 1022802.0 × 102627192300He
12205.1 × 1022801.0 × 10252102100He
1320.65.8 × 10221201.0 × 10251802300He
14291.2 × 1023801.0 × 1025952400He
15291.2 × 1023803.0 × 10252502400He
16291.2 × 1023805.0 × 10254202400He
17291.2 × 1023801.0 × 10267202400He
18301.3 × 1023301.0 × 10267702300H2
19267.7 × 1022801.0 × 102612782300H2
Table 1  Main parameters of the He ion irradiation experiments
Fig.2  SEM analysis of the surface morphology of W samples irradiated by He ion with different fluence (a) 0 /m2, (b) 4.0 × 1024 /m2, (c) 1.0 × 1025 /m2, (d) 3.0 × 1025 /m2, (e) 5.0 × 1025 /m2 , (f) 1.0 × 1026 /m2
Fig.3  Histogram shows the radius distribution of He bubbles in the W sample surface at a fluence of 4.0 × 1024 /m2, the solid line shows the Gaussian fitting results of the histogram (a), and relationship between the average radius and density of He bubbles and ion fluence (b, c)
Fig.4  SEM analysis of the surface morphology of W samples irradiated by He ion with different ion energy (a) 30 eV, (b) 80 eV, (c) 120 eV
Fig.5  SEM analysis of the surface morphology of W samples irradiated by He ion with different fluence (a) 1.0 × 1025 /m2, (b) 3.0 × 1025 /m2, (c) 5.0 × 1025 /m2, (d) 7.0 × 1025 /m2, (e) 1.0 × 1026 /m2, (f) 2.0 × 1026 /m2
Fig.6  SEM analysis of the surface morphology of W samples irradiated by He ion with different temperature (a, b) 2100 K, (c) 2300 K (d) 2400 K
Fig.7  SEM of the surface morphology of W samples irradiated by He ion with different fluence (a) 1.0 × 1025 /m2, (b) 3.0 × 1025 /m2, (c) 5.0 × 1025 /m2, (d~f) 1.0 × 1026 /m2
Fig.8  SEM analysis of the surface morphology of W samples irradiated by hydrogen ion (a) H2-30 eV-2300 K, (b) H2-80 eV-2300 K
Fig.9  Mass loss of W samples as a function of He ion fluence (a) and He ion energy (b)
Ion energy / eVIon fluence / m-2Mass loss / g·m-2Ys
301.0 × 1025 /m21.545.0 × 10-4
801.0 × 1025 /m21.696.2 × 10-4
1201.0 × 1025 /m22.678.4 × 10-4
Table 2  Sputtering yield of W samples irradiated by He ion with different ion energy
1 Wu C H, Alessandrini C, Bonal J P, et al. Progress of the European R&D on plasma-wall interactions, neutron effects and tritium removal in ITER plasma facing materials [J]. Fusion Eng. Des., 2001, 56-57: 179
2 Behrisch R, Federici G, Kukushkin A, et al. Material erosion at the vessel walls of future fusion devices [J]. J. Nucl. Mater., 2003, 313-316: 388
3 Pitts R A, Carpentier S, Escourbiac F, et al. Physics basis and design of the ITER plasma-facing components [J]. J. Nucl. Mater., 2011, 415(suppl.1) : S957
4 Neu R, Rohde V, Geier A, et al. Plasma operation with tungsten tiles at the central column of ASDEX Upgrade [J]. J. Nucl. Mater., 2001, 290-293: 206
5 De Temmerman G, Bystrov K, Doerner R P, et al. Helium effects on tungsten under fusion-relevant plasma loading conditions [J]. J. Nucl. Mater., 2013, 438 suppl: S78
6 Parish C M, Hijazi H, Meyer H M, et al. Effect of tungsten crystallographic orientation on He-ion-induced surface morphology changes [J]. Acta Mater., 2014, 62: 173
7 Meyer F W, Hijazi H, Bannister M E, et al. He-ion and self-atom induced damage and surface-morphology changes of a hot W target [J]. Phys. Scr., 2014, T159: 014029
8 Ueda Y, Peng H Y, Lee H T, et al. Helium effects on tungsten surface morphology and deuterium retention [J]. J. Nucl. Mater., 2013, 442(suppl.1-suppl.3) : S267
9 Gasparyan Y, Efimov V, Bystrov K. Helium concentration measurement in tungsten fuzz-like nanostructures by means of thermal desorption spectroscopy [J]. Nucl. Fusion, 2016, 56(5): 054002
10 Kajita S, Sakaguchi W, Ohno N, et al. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions [J]. Nucl. Fusion, 2009, 49: 095005
11 Kajita S, Yoshida N, Yoshihara R, et al. TEM observation of the growth process of helium nanobubbles on tungsten: nanostructure formation mechanism [J]. J. Nucl. Mater., 2011, 418: 152
12 Baldwin M J, Doerner R P. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J]. Nucl. Fusion, 2008, 48(3): 035001
13 Baldwin M J, Lynch T C, Doerner R P, et al. Nanostructure formation on tungsten exposed to low-pressure rf helium plasmas: a study of ion energy threshold and early stage growth [J]. J. Nucl. Mater., 2011, 415(suppl.1) : S104
14 De Temmerman G, Bystrov K, Zielinski J J, et al. Nanostructuring of molybdenum and tungsten surfaces by low-energy helium ions [J]. J. Vac. Sci. Technol., 2012, 30A: 041306
15 Wright G M, Brunner D, Baldwin M J, et al. Comparison of tungsten nano-tendrils grown in Alcator C-Mod and linear plasma devices [J]. J. Nucl. Mater., 2013, 438 suppl: S84
16 Hammond K D. Helium, hydrogen, and fuzz in plasma-facing materials [J]. Mater. Res. Express, 2017, 4(10): 104002
17 Liu L. Research on tungsten material irradiation damage induced by low-energy and high-flux hydrogen/helium ions [D]. Dalian: Dalian University of Technology, 2019
刘 璐. 低能强流氢氦离子辐照下钨材料损伤研究 [D]. 大连: 大连理工大学, 2019
18 Woller K B, Whyte D G, Wright G M. Impact of helium ion energy modulation on tungsten surface morphology and nano-tendril growth [J]. Nucl. Fusion, 2017, 57(6): 066005
19 Nishijima D, Ye M Y, Ohno N, et al. Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II [J]. J. Nucl. Mater., 2004, 329-333: 1029
20 Cipiti B B, Kulcinski G L. Helium and deuterium implantation in tungsten at elevated temperatures [J]. J. Nucl. Mater., 2005, 347(3): 298
21 Liu L, Liu D P, Hong Y, et al. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions [J]. J. Nucl. Mater., 2016, 471: 1
22 Cui Y Q, Fan H Y, Niu C J, et al. Stress-driven surface swell and exfoliation of copper as the plasma-facing materials in NBI ICP source [J]. Plasma Phys. Control. Fusion, 2021, 64(1): 015002
23 Zhang Y, Li X P, Niu C J, et al. W nano-fuzz growth by high-flux He ion irradiation with their energy above 300 eV [J]. Nucl. Instrum. Methods Phys. Sec. B: Beam Interact. Mater. Atoms, 2022, 520: 22
24 Niu C J, Zhang Y, Cui Y Q, et al. Effect of temperature on the growth and surface bursting of He nano-bubbles in W under fusion-relevant He ion irradiations [J]. Fusion Eng. Des., 2021, 163: 112159
25 Zhao J T, Meng X, Guan X C, et al. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation [J]. J. Nucl. Mater., 2018, 503: 198
26 Li Y P, Ran G, Liu X Y, et al. In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing [J]. Chin. Phys. B, 2021, 30(8): 086109
27 Alimov V K, Tyburska-Püschel B, Hatano Y, et al. The effect of displacement damage on deuterium retention in ITER-grade tungsten exposed to low-energy, high-flux pure and helium-seeded deuterium plasmas [J]. J. Nucl. Mater., 2012, 420: 370
28 Roszell J P T. The effect of ion energy and substrate temperature on deuterium trapping in tungsten [D]. Toronto: University of Toronto, 2012
29 Qu S L. Research on micro-nano scale damage on tungsten surface under helium irradiation [D]. Beijing: Tsinghua University, 2018
曲世联. 氦辐照条件下钨材料表面微纳尺度的损伤研究 [D]. 北京: 清华大学, 2018
30 Dechaumphai E, Barton J L, Tesmer J R, et al. Near-surface thermal characterization of plasma facing components using the 3-omega method [J]. J. Nucl. Mater., 2014, 455(1-3): 56
31 Armstrong D E J, Edmondson P D, Roberts S G. Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten [J]. Appl. Phys. Lett., 2013, 102(25): 251901
32 Cui S, Simmonds M, Qin W J, et al. Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method [J]. J. Nucl. Mater., 2017, 486: 267
33 Miyazawa T, Hwang T, Tsuchida K, et al. Effects of helium on mechanical properties of tungsten for fusion applications [J]. Nucl. Mater. Energy, 2018, 15: 154
34 Hu R H, Yang Z, Lei Q J, et al. Effect of helium ions irradiation on stability of nano-tungsten whiskers [J]. Chin. J. Mater. Res., 2022, 36(11): 850
doi: 10.11901/1005.3093.2021.622
胡瑞航, 杨 贞, 雷齐俊 等. 氦离子辐照对钨纳米丝稳定性的影响 [J]. 材料研究学报, 2022, 36(11): 850
doi: 10.11901/1005.3093.2021.622
35 Fan H Y, Niu C J, LI X P, et al. W fuzz layers: very high resistance to sputtering under fusion-relevant He+ irradiations [J]. Plasma Sci. Technol., 2022, 24(1): 015601
[1] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
[2] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[3] GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles[J]. 材料研究学报, 2024, 38(6): 423-429.
[4] WANG Wei, CHANG Wenjuan, LV Fanfan, XIE Zelei, YU Chengcheng. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. 材料研究学报, 2024, 38(6): 410-422.
[5] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[6] WANG Qiang, ZHU Heyu, LIU Zhibo, ZHU Yi, LIU Peitao, REN Wencai. Electron Microscopy Study of Stacking Defects in β-In2Se3[J]. 材料研究学报, 2024, 38(5): 330-336.
[7] XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. 材料研究学报, 2024, 38(5): 365-372.
[8] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[9] WU Yingming, JIANG Keda, LIU Shengdan, FAN Shitong, QIN Qiuhui, LI Jun. Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ[J]. 材料研究学报, 2024, 38(5): 337-346.
[10] LIU Jiaxiao, HU Xiao, DING Hua. Effect of Aging Treatment on Microstructure Evolution and Mechanical Properties of Fe-12Mn-8Al-1C-3Cu Lightweight Steel[J]. 材料研究学报, 2024, 38(5): 356-364.
[11] LI Ruohao, HU Xiaoyu, WANG Zhongcheng, LI Hao, YANG Yong, XU Le, LIANG Enpu, HE Xiaofei. High-temperature Mechanical Properties and Strengthening Mechanism of New Secondary Hardened Steel 25CrMo3NiTiVNbZr[J]. 材料研究学报, 2024, 38(5): 390-400.
[12] TIAN Songwen, LIU Lirong, TIAN Sugui. Creep Behavior and Mechanism of a Re/Ru-containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2024, 38(4): 248-256.
[13] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[14] WANG Yuzhao, JIANG Zhonghua, JIA Chunni, ZHANG Yutuo, WANG Pei. Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel[J]. 材料研究学报, 2024, 38(4): 279-287.
[15] WU Houran, DUAN Tigang, MA Li, SHAO Gangqin, ZHANG Hengyu, ZHANG Haibing. Electrochemical Performance of Al-Zn-In-Mg-Ga-Mn Alloys as Anodes for Al-Air Batteries[J]. 材料研究学报, 2024, 38(4): 257-268.
No Suggested Reading articles found!