|
|
Effect of Helium Ions Irradiation at High Temperature on Surface Morphology of Tungsten |
CUI Yunqiu, NIU Chunjie, LV Jianhua, NI Weiyuan, LIU Dongping, LU Na( ) |
School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China |
|
Cite this article:
CUI Yunqiu, NIU Chunjie, LV Jianhua, NI Weiyuan, LIU Dongping, LU Na. Effect of Helium Ions Irradiation at High Temperature on Surface Morphology of Tungsten. Chinese Journal of Materials Research, 2024, 38(6): 437-445.
|
Abstract Tungsten (W) is considered as one of the most promising plasma facing materials for fusion devices due to its excellent properties such as high melting point, high thermal conductivity, high sputtering threshold and low hydrogen isotope retention. In this study, high-purity tungsten blocks are irradiated by helium (He) ions at temperatures > 2000 K, and the effect of changes in irradiation parameters on the evolution of the W surface morphology is investigated. The results show that at 2300 K, the surface of the W samples shows a significant swelling morphology due to the growth of helium bubbles. As the ion fluence increases, the helium bubbles rupture, accompanied by the appearance of surface holes, and further surface swelling gradually develops into cross-linked coral-like tungsten nanofilament structures; With the increase of ion energy, the depth of helium ions injected into the W material increases, which promotes the growth of surface tungsten filament-like structures. When the temperature is changed from 2100 K to 2400 K, the temperature increase enhances the rapid diffusion of self-interstitial tungsten atoms on the surface, which leads to the suppression of the surface swelling and tungsten filament-like structure growth behavior, and even the degradation of the tungsten filament-like structure. The increase in both helium ion fluence and ion energy promotes the formation and evolution of tungsten filament-like structures on the surface of W materials after high-temperature He ion irradiation in the adopted range of experimental parameters, while the increase in temperature shows the opposite trend.
|
Received: 12 June 2023
|
|
Fund: National Key R&D Program of China(2017YFE0300106);the Fundamental Research Funds for the Central Universities(DUT20JC20);Dalian Science and Technology Star Project(2020RQ136);the Central Guidance on Local Science and Technology Development Fund of Liaoning Province(2022010055-JH6/1001);the Fundamental Research Funds for the Central Universities(DUT21RC(3)066) |
Corresponding Authors:
LU Na, Tel: 15504256218, E-mail: luna@dlut.edu.cn
|
1 |
Wu C H, Alessandrini C, Bonal J P, et al. Progress of the European R&D on plasma-wall interactions, neutron effects and tritium removal in ITER plasma facing materials [J]. Fusion Eng. Des., 2001, 56-57: 179
|
2 |
Behrisch R, Federici G, Kukushkin A, et al. Material erosion at the vessel walls of future fusion devices [J]. J. Nucl. Mater., 2003, 313-316: 388
|
3 |
Pitts R A, Carpentier S, Escourbiac F, et al. Physics basis and design of the ITER plasma-facing components [J]. J. Nucl. Mater., 2011, 415(suppl.1) : S957
|
4 |
Neu R, Rohde V, Geier A, et al. Plasma operation with tungsten tiles at the central column of ASDEX Upgrade [J]. J. Nucl. Mater., 2001, 290-293: 206
|
5 |
De Temmerman G, Bystrov K, Doerner R P, et al. Helium effects on tungsten under fusion-relevant plasma loading conditions [J]. J. Nucl. Mater., 2013, 438 suppl: S78
|
6 |
Parish C M, Hijazi H, Meyer H M, et al. Effect of tungsten crystallographic orientation on He-ion-induced surface morphology changes [J]. Acta Mater., 2014, 62: 173
|
7 |
Meyer F W, Hijazi H, Bannister M E, et al. He-ion and self-atom induced damage and surface-morphology changes of a hot W target [J]. Phys. Scr., 2014, T159: 014029
|
8 |
Ueda Y, Peng H Y, Lee H T, et al. Helium effects on tungsten surface morphology and deuterium retention [J]. J. Nucl. Mater., 2013, 442(suppl.1-suppl.3) : S267
|
9 |
Gasparyan Y, Efimov V, Bystrov K. Helium concentration measurement in tungsten fuzz-like nanostructures by means of thermal desorption spectroscopy [J]. Nucl. Fusion, 2016, 56(5): 054002
|
10 |
Kajita S, Sakaguchi W, Ohno N, et al. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions [J]. Nucl. Fusion, 2009, 49: 095005
|
11 |
Kajita S, Yoshida N, Yoshihara R, et al. TEM observation of the growth process of helium nanobubbles on tungsten: nanostructure formation mechanism [J]. J. Nucl. Mater., 2011, 418: 152
|
12 |
Baldwin M J, Doerner R P. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J]. Nucl. Fusion, 2008, 48(3): 035001
|
13 |
Baldwin M J, Lynch T C, Doerner R P, et al. Nanostructure formation on tungsten exposed to low-pressure rf helium plasmas: a study of ion energy threshold and early stage growth [J]. J. Nucl. Mater., 2011, 415(suppl.1) : S104
|
14 |
De Temmerman G, Bystrov K, Zielinski J J, et al. Nanostructuring of molybdenum and tungsten surfaces by low-energy helium ions [J]. J. Vac. Sci. Technol., 2012, 30A: 041306
|
15 |
Wright G M, Brunner D, Baldwin M J, et al. Comparison of tungsten nano-tendrils grown in Alcator C-Mod and linear plasma devices [J]. J. Nucl. Mater., 2013, 438 suppl: S84
|
16 |
Hammond K D. Helium, hydrogen, and fuzz in plasma-facing materials [J]. Mater. Res. Express, 2017, 4(10): 104002
|
17 |
Liu L. Research on tungsten material irradiation damage induced by low-energy and high-flux hydrogen/helium ions [D]. Dalian: Dalian University of Technology, 2019
|
|
刘 璐. 低能强流氢氦离子辐照下钨材料损伤研究 [D]. 大连: 大连理工大学, 2019
|
18 |
Woller K B, Whyte D G, Wright G M. Impact of helium ion energy modulation on tungsten surface morphology and nano-tendril growth [J]. Nucl. Fusion, 2017, 57(6): 066005
|
19 |
Nishijima D, Ye M Y, Ohno N, et al. Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II [J]. J. Nucl. Mater., 2004, 329-333: 1029
|
20 |
Cipiti B B, Kulcinski G L. Helium and deuterium implantation in tungsten at elevated temperatures [J]. J. Nucl. Mater., 2005, 347(3): 298
|
21 |
Liu L, Liu D P, Hong Y, et al. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions [J]. J. Nucl. Mater., 2016, 471: 1
|
22 |
Cui Y Q, Fan H Y, Niu C J, et al. Stress-driven surface swell and exfoliation of copper as the plasma-facing materials in NBI ICP source [J]. Plasma Phys. Control. Fusion, 2021, 64(1): 015002
|
23 |
Zhang Y, Li X P, Niu C J, et al. W nano-fuzz growth by high-flux He ion irradiation with their energy above 300 eV [J]. Nucl. Instrum. Methods Phys. Sec. B: Beam Interact. Mater. Atoms, 2022, 520: 22
|
24 |
Niu C J, Zhang Y, Cui Y Q, et al. Effect of temperature on the growth and surface bursting of He nano-bubbles in W under fusion-relevant He ion irradiations [J]. Fusion Eng. Des., 2021, 163: 112159
|
25 |
Zhao J T, Meng X, Guan X C, et al. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation [J]. J. Nucl. Mater., 2018, 503: 198
|
26 |
Li Y P, Ran G, Liu X Y, et al. In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing [J]. Chin. Phys. B, 2021, 30(8): 086109
|
27 |
Alimov V K, Tyburska-Püschel B, Hatano Y, et al. The effect of displacement damage on deuterium retention in ITER-grade tungsten exposed to low-energy, high-flux pure and helium-seeded deuterium plasmas [J]. J. Nucl. Mater., 2012, 420: 370
|
28 |
Roszell J P T. The effect of ion energy and substrate temperature on deuterium trapping in tungsten [D]. Toronto: University of Toronto, 2012
|
29 |
Qu S L. Research on micro-nano scale damage on tungsten surface under helium irradiation [D]. Beijing: Tsinghua University, 2018
|
|
曲世联. 氦辐照条件下钨材料表面微纳尺度的损伤研究 [D]. 北京: 清华大学, 2018
|
30 |
Dechaumphai E, Barton J L, Tesmer J R, et al. Near-surface thermal characterization of plasma facing components using the 3-omega method [J]. J. Nucl. Mater., 2014, 455(1-3): 56
|
31 |
Armstrong D E J, Edmondson P D, Roberts S G. Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten [J]. Appl. Phys. Lett., 2013, 102(25): 251901
|
32 |
Cui S, Simmonds M, Qin W J, et al. Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method [J]. J. Nucl. Mater., 2017, 486: 267
|
33 |
Miyazawa T, Hwang T, Tsuchida K, et al. Effects of helium on mechanical properties of tungsten for fusion applications [J]. Nucl. Mater. Energy, 2018, 15: 154
|
34 |
Hu R H, Yang Z, Lei Q J, et al. Effect of helium ions irradiation on stability of nano-tungsten whiskers [J]. Chin. J. Mater. Res., 2022, 36(11): 850
doi: 10.11901/1005.3093.2021.622
|
|
胡瑞航, 杨 贞, 雷齐俊 等. 氦离子辐照对钨纳米丝稳定性的影响 [J]. 材料研究学报, 2022, 36(11): 850
doi: 10.11901/1005.3093.2021.622
|
35 |
Fan H Y, Niu C J, LI X P, et al. W fuzz layers: very high resistance to sputtering under fusion-relevant He+ irradiations [J]. Plasma Sci. Technol., 2022, 24(1): 015601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|