Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (7): 500-510    DOI: 10.11901/1005.3093.2020.448
ARTICLES Current Issue | Archive | Adv Search |
Damage Evolution and Fracture Behavior of Three-directional Orthogonal Fiber Reinforced Aluminum Matrix Composites under Longitudinal Tensile Loading
LIU Fenghua1, ZHAO Wenhao1, CAI Changchun1, WANG Zhenjun1(), SHEN Gaofeng1, ZHANG Yingfeng1,2, XU Zhifeng1, YU Huan1
1.School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

LIU Fenghua, ZHAO Wenhao, CAI Changchun, WANG Zhenjun, SHEN Gaofeng, ZHANG Yingfeng, XU Zhifeng, YU Huan. Damage Evolution and Fracture Behavior of Three-directional Orthogonal Fiber Reinforced Aluminum Matrix Composites under Longitudinal Tensile Loading. Chinese Journal of Materials Research, 2022, 36(7): 500-510.

Download:  HTML  PDF(14095KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel 3D orthogonal weaving carbon fibre reinforced Al-matrix composite was prepared by vacuum-pressure infiltration method. A finite element based micromechanical model by considering the interfacial action was developed according to the characteristics of cross-section morphology and weaving structure of yarns in the composite, and then the progressive damage and fracture behavior of the composites subjected to longitudinal tensile loading were assessed via experiment and numerical simulation. The results shown that the acquired tensile modulus, ultimate strength and fracture strain is 120.7 GPa, 771.75 MPa and 0.83%, respectively. The computationally predicted stress-strain curve agrees well with the experimental ones, and the calculation error of the above properties is -3.21%, 1.75% and -9.63%, respectively. At the initial tensile stage local interface failure was observed between the matrix alloy and Z directional yarns. With the increase of tensile strain, the matrix damage zone in the interspace of yarns accumulate gradually and lead to the transverse cracking of Z directional yarns and weft yarns successively. At the final tensile stage, the warp yarns and matrix alloy failed concurrently, and hence the composite lost its bearing capacity. Warp yarns fracture and transverse cracking of weft and Z directional yarns were observed on the tensile fracture morphology. The axial fracture of warp yarns, which play predominant role in load bearing, is flat and with limited fiber pull-out morphology. As a result, the composites exhibit quasi-brittle fracture behavior during the longitudinal tensile process.

Key words:  composite      mechanical property      micromechanics      progressive damage     
Received:  25 October 2020     
ZTFLH:  TB331  
Fund: National Natural Science Foundation of China(52162018);National Natural Science Foundation of China(51765045);Aeronautical Science Foundation of China(2019ZF056013);Jiangxi Provincial Natural Science Foundation(20202ACBL204010);National Defense Basic Research Program(JCKY2018401C004)
About author:  WANG Zhenjun, Tel: 18970951974, E-mail: wangzhj@nchu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.448     OR     https://www.cjmr.org/EN/Y2022/V36/I7/500

Fiber typed/μmTensile strength/MPaYoung's modulus/GPaDensity/g·cm-3Elongation/%Poisson's ratio
M40J644003771.810.70.26
Table 1  performance parameters of graphite fiber M40J
ElementsSiMgCuMnTiAl
Content0.39.5~11.00.10.150.15Bal.
Table 2  Chemical composition of the aluminum alloy ZL301 (mass fraction, %)
Fabric structureFabric size/mm

Yarn density

/bundle·cm-1

Yarn specification

Fabric weight

/kg

Fiber

content/%

3D orthogonal200×250×4

Warp:12

Weft:5

Warp yarn:M40 6K×3

Weft yarn:M40 6K×2

Z yarn:M40 6K×1

0.975

50
Table 3  Architecture parameters of the 3D orthogonal woven fabric
Fig.1  3D orthogonal woven fabric and 3DOW-CF/Al composites (a) fabric appearance, (b) fabric architecture, (c) 3DOW-CF/Al composite
Fig.2  Schematic diagram of the vacuum-assisted pressure infiltration apparatus
Fig.3  Tensile specimen of the 3DOW-CF/Al composites (a) specimen size (mm), (b) specimen appearance
Fig.4  Architecture and cross-section of yarns in the 3DOW-CF/Al composites (a) warp yarn direction, (b) weft yarn direction, (c) Z yarn direction, (d) microstructure of yarns
Fig.5  Mesoscale structure model of the 3DOW-CF/Al composites
Fig.6  Mesoscale structure unit cell model of the 3DOW-CF/Al composites (a) with matrix alloy, (b) without matrix alloy
Fig.7  Schematic of the improved PBCs
/MPa Emνm

σym

/MPa

EHm

/MPa

σum

/MPa

ε0pl

/%

εfpl

/%

817000.3379.024900130.00.160.80
Table 4  Elastic and plastic properties of the matrix alloy
E11f/GPaE22f/GPaυ12fυ23fG12f/GPaG23f/GPaXtf/MPaXcf/MPa
377190.260.38.97.31760900
Table 5  Elastic constants and strength parameters of the fiber
E11/MPaE22/MPaG12/MPaG23/MPaν12ν23
285460218401012083800.280.59
Xt/MPaXc/MPaYt/MPaYc/MPaS12/MPaS23/MPa
12407503411210016
Table 6  Elastic constants and strength parameters of the yarn
tn0/MPats0/MPatt0/MPaΔ¯0/10-6mΔ¯f/10-6m
16.09.59.50.080.72
Table 7  Interfacial property parameters used in the micro-scale and mesoscale model
Fig.8  Traction-separation displacement rule of cohesion model
Fig.9  Experimental and predicted tensile stress-strain curves of the 3DOW-CF/Al composites under warp directional tension
Mechanical propertiesElastic moduli/GPaTensile strength/MPaFracture strain/%
Calculation116.82785.320.75
Experiments120.70771.750.83
Calculation error/%-3.211.75-9.63
Table 8  Experimental and computational results of the mechanical properties of 3DOW-CF/Al composites
Fig.10  Damage progression and failure process of the 3DOW-CF/Al composites: (a) local interface failure, (b) initial matrix damage, (c) local failure of Z yarns, (d) failure of weft and Z yarns, (e) initial failure of warp yarns, (f) local failure of matrix, (g) fracture status of yarns
Fig.11  Fracture morphology of the 3DAW-CF/Al composites at warp directional tension condition (a) fracture morphology of the yarns, (b) fracture morphology inside the warp yarn
1 Zhang X H, Hu X H, Guan S Y, et al. Fabrication methods, mechanical behavior and applications of boron/aluminum composites [J]. Aerosp. Mater. Technol., 2000, 30(1): 19
张绪虎, 胡欣华, 关盛勇 等. B/Al复合材料的制造、性能及应用 [J]. 宇航材料工艺, 2000, 30(1): 19
2 Rawal S P. Metal-matrix composites for space applications [J]. JOM, 2001, 53(4): 14
3 Shirvanimoghaddam K, Hamim S U, Akbari M K, et al. Carbon fiber reinforced metal matrix composites: fabrication processes and properties [J]. Composites, 2017, 92A: 70
4 Matsunaga T, Ogata K, Hatayama T, et al. Effect of acoustic cavitation on ease of infiltration of molten aluminum alloys into carbon fiber bundles using ultrasonic infiltration method [J]. Composites, 2007, 38A: 771
5 Zhang J J, Liu S C, Lu Y P, et al. Fabrication process and bending properties of carbon fibers reinforced Al-alloy matrix composites [J]. J. Mater. Process. Technol., 2016, 231: 366
doi: 10.1016/j.jmatprotec.2016.01.007
6 Wang X, Jiang D M, Wu G H, et al. Effect of Mg content on the mechanical properties and microstructure of Grf/Al composite [J]. Mater. Sci. Eng., 2008, 497A: 31
7 Wang Z J, Tian L, Cai C C, et al. Progressive damage and elastic-plastic behavior of CF/Al composites during transverse tensile process [J]. Chin. J. Nonferrous Met., 2019, 29: 458
王振军, 田 亮, 蔡长春 等. CF/Al复合材料横向拉伸渐进损伤与弹塑性力学行为研究 [J]. 中国有色金属学报, 2019, 29: 458
8 Zhou Y X, Yang W, Xia Y M, et al. An experimental study on the tensile behavior of a unidirectional carbon fiber reinforced aluminum composite at different strain rates [J]. Mat. Sci. Eng., 2003, 362A: 112
9 Jacquesson M, Girard A, Vidal-Sétif M H, et al. Tensile and fatigue behavior of al-based metal matrix composites reinforced with continuous carbon or alumina fibers: Part I. Quasi-unidirectional composites [J]. Metall. Mater. Trans., 2004, 35A: 3289
10 Wang Y G, Wang Y L, Wu G S. Preparation and mechanical properties of 3-D braided carbon composites [J]. J. Mater. Sci. Eng., 2004, 22: 344
王玉果, 王玉林, 吴广顺. 三维编织碳复合材料的制备及其力学性能研究 [J]. 材料科学与工程学报, 2004, 22: 344
11 Gao X. Study on the integrated performance of carbon fiber composites based on different three-dimensional woven structures [D]. Shanghai: Donghua University, 2017
高 雄. 基于不同三维机织结构的碳纤复合材料整体力学性能研究 [D]. 上海: 东华大学, 2017
12 Feng J P, Yu H, Xu Z F, et al. Microstructure and bending properties of three-dimensional orthogonal Cf/Al composites [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 202
冯景鹏, 余 欢, 徐志锋 等. 三维正交Cf/Al复合材料的显微组织与弯曲性能 [J]. 特种铸造及有色合金, 2020, 40: 202
13 Ahmed S, Zheng X T, Yan L L, et al. Influence of asymmetric hybridization on impact response of 3D orthogonal woven composites [J]. Compo. Sci. Technol., 2020, 199: 108326
doi: 10.1016/j.compscitech.2020.108326
14 Wan Y M, Sun B Z, Gu B H. Multi-scale structure modeling of damage behaviors of 3D orthogonal woven composite materials subject to quasi-static and high strain rate compressions [J]. Mech. Mater., 2016, 94: 1
doi: 10.1016/j.mechmat.2015.11.012
15 Naik N K, Azad N M, Prasad P D, et al. Stress and failure analysis of 3D orthogonal interlock woven composites [J]. J. Reinf. Plast. Compos., 2001, 20: 1485
doi: 10.1177/073168401772679110
16 Sun B Z, Liu Y K, Gu B H. A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite [J]. Composites, 2009, 40B: 552
17 Green S D, Matveev M Y, Long A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry [J]. Compos. Struct., 2014, 118: 284
doi: 10.1016/j.compstruct.2014.07.005
18 Wu G H, Jiang L T, Chen G Q, et al. Research progress on the control of interfacial reactions in metal matrix composites [J]. Mater. China, 2012, 31(7): 51
武高辉, 姜龙涛, 陈国钦 等. 金属基复合材料界面反应控制研究进展 [J]. 中国材料进展, 2012, 31(7): 51
19 Ten X F, Shi D Q, Cheng Z, et al. Investigation on non-uniform strains of a 2.5D woven ceramic matrix composite under in-plane tensile stress [J]. J. Eur. Ceram. Soc., 2020, 40: 36
doi: 10.1016/j.jeurceramsoc.2019.08.030
20 Zhang C, Xu X W, Yan X. General periodic boundary conditions and their application to micromechanical finite element analysis of textile composites [J]. Acta Aeronaut. Astronaut. Sin., 2013, 34: 1636
张 超, 许希武, 严 雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现 [J]. 航空学报, 2013, 34: 1636
21 Wang Z J, Wang Z Y, Xiong B W, et al. Micromechanics analysis on the microscopic damage mechanism and mechanical behavior of graphite fiber-reinforced aluminum composites under transverse tension loading [J]. J. Alloys Compd., 2020, 815: 152459
doi: 10.1016/j.jallcom.2019.152459
22 Gao H X, Wei G Z, Zhang X Y, et al. Effect of mixture rare earth on microstructures and mechanical properties of ZL301 alloy [J]. Spec. Cast. Nonferrous Alloys, 2014, 34: 973
高红选, 卫广智, 张晓燕 等. 混合稀土对ZL301合金组织及力学性能的影响 [J]. 特种铸造及有色合金, 2014, 34: 973
23 Hopkins D A, Chamis C C. A unique set of micromechanics equations for high-temperature metal matrix composites [A]. NASA TM 87154, Prepared for the First Symposium on Testing Technology of Metal Matrix Composites [C]. Sponsored by ASTM, Nashville, 1985: 18
24 Rossoll A, Moser B, Mortensen A. Tensile strength of axially loaded unidirectional Nextel 610TM reinforced aluminium: A case study in local load sharing between randomly distributed fibres [J]. Composites, 2012, 43A: 129
25 Dève H E. Compressive strength of continuous fiber reinforced aluminum matrix composites [J]. Acta Mater., 1997, 45: 5041
doi: 10.1016/S1359-6454(97)00174-2
26 Zhou J Q, Wang Z J, Yang S Y, et al. Damage evolution and fracture behaviors of continuous graphite fiber reinforced aluminium matrix composites subjected to quasi-static tensile loading [J]. Acta Mater. Compo. Sin., 2020, 37: 907
周金秋, 王振军, 杨思远 等. 连续石墨纤维增强铝基复合材料准静态拉伸损伤演化与断裂力学行为 [J]. 复合材料学报, 2020, 37: 907
27 Wang Y C, Huang Z M. Analytical micromechanics models for elastoplastic behavior of long fibrous composites: a critical review and comparative study [J]. Materials (Basel), 2018, 11: 1919
doi: 10.3390/ma11101919
28 Wang Z J, Yang S Y, Du Z H, et al. Micromechanical modeling of damage evolution and mechanical behaviors of CF/Al composites under transverse and longitudinal Tensile Loadings [J]. Materials (Basel), 2019, 12(19): 3133
doi: 10.3390/ma12193133
29 Xu Q, Qu S X. Irreversible deformation of metal matrix composites: A study via the mechanism-based cohesive zone model [J]. Mech. Mater., 2015, 89: 72
doi: 10.1016/j.mechmat.2015.06.003
30 Zhou Z Z, Xu Z F, Yu H, et al. Effects of braiding structures on microstructure and mechanical properties of 3D-Cf/Al composites [J]. Chin. J. Nonferrous Met., 2016, 26: 773
周珍珍, 徐志锋, 余 欢 等. 编织结构对3D-Cf/Al复合材料显微组织与力学性能的影响 [J]. 中国有色金属学报, 2016, 26: 773
31 Li D G, Chen G Q, et al. Effect of thermal cycling on the mechanical properties of Cf/Al composites [J]. Mater. Sci. Eng., 2013, 586A: 330
[1] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[7] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!