|
|
Damage Evolution and Fracture Behavior of Three-directional Orthogonal Fiber Reinforced Aluminum Matrix Composites under Longitudinal Tensile Loading |
LIU Fenghua1, ZHAO Wenhao1, CAI Changchun1, WANG Zhenjun1( ), SHEN Gaofeng1, ZHANG Yingfeng1,2, XU Zhifeng1, YU Huan1 |
1.School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China 2.School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
|
Cite this article:
LIU Fenghua, ZHAO Wenhao, CAI Changchun, WANG Zhenjun, SHEN Gaofeng, ZHANG Yingfeng, XU Zhifeng, YU Huan. Damage Evolution and Fracture Behavior of Three-directional Orthogonal Fiber Reinforced Aluminum Matrix Composites under Longitudinal Tensile Loading. Chinese Journal of Materials Research, 2022, 36(7): 500-510.
|
Abstract A novel 3D orthogonal weaving carbon fibre reinforced Al-matrix composite was prepared by vacuum-pressure infiltration method. A finite element based micromechanical model by considering the interfacial action was developed according to the characteristics of cross-section morphology and weaving structure of yarns in the composite, and then the progressive damage and fracture behavior of the composites subjected to longitudinal tensile loading were assessed via experiment and numerical simulation. The results shown that the acquired tensile modulus, ultimate strength and fracture strain is 120.7 GPa, 771.75 MPa and 0.83%, respectively. The computationally predicted stress-strain curve agrees well with the experimental ones, and the calculation error of the above properties is -3.21%, 1.75% and -9.63%, respectively. At the initial tensile stage local interface failure was observed between the matrix alloy and Z directional yarns. With the increase of tensile strain, the matrix damage zone in the interspace of yarns accumulate gradually and lead to the transverse cracking of Z directional yarns and weft yarns successively. At the final tensile stage, the warp yarns and matrix alloy failed concurrently, and hence the composite lost its bearing capacity. Warp yarns fracture and transverse cracking of weft and Z directional yarns were observed on the tensile fracture morphology. The axial fracture of warp yarns, which play predominant role in load bearing, is flat and with limited fiber pull-out morphology. As a result, the composites exhibit quasi-brittle fracture behavior during the longitudinal tensile process.
|
Received: 25 October 2020
|
|
Fund: National Natural Science Foundation of China(52162018);National Natural Science Foundation of China(51765045);Aeronautical Science Foundation of China(2019ZF056013);Jiangxi Provincial Natural Science Foundation(20202ACBL204010);National Defense Basic Research Program(JCKY2018401C004) |
About author: WANG Zhenjun, Tel: 18970951974, E-mail: wangzhj@nchu.edu.cn
|
1 |
Zhang X H, Hu X H, Guan S Y, et al. Fabrication methods, mechanical behavior and applications of boron/aluminum composites [J]. Aerosp. Mater. Technol., 2000, 30(1): 19
|
|
张绪虎, 胡欣华, 关盛勇 等. B/Al复合材料的制造、性能及应用 [J]. 宇航材料工艺, 2000, 30(1): 19
|
2 |
Rawal S P. Metal-matrix composites for space applications [J]. JOM, 2001, 53(4): 14
|
3 |
Shirvanimoghaddam K, Hamim S U, Akbari M K, et al. Carbon fiber reinforced metal matrix composites: fabrication processes and properties [J]. Composites, 2017, 92A: 70
|
4 |
Matsunaga T, Ogata K, Hatayama T, et al. Effect of acoustic cavitation on ease of infiltration of molten aluminum alloys into carbon fiber bundles using ultrasonic infiltration method [J]. Composites, 2007, 38A: 771
|
5 |
Zhang J J, Liu S C, Lu Y P, et al. Fabrication process and bending properties of carbon fibers reinforced Al-alloy matrix composites [J]. J. Mater. Process. Technol., 2016, 231: 366
doi: 10.1016/j.jmatprotec.2016.01.007
|
6 |
Wang X, Jiang D M, Wu G H, et al. Effect of Mg content on the mechanical properties and microstructure of Grf/Al composite [J]. Mater. Sci. Eng., 2008, 497A: 31
|
7 |
Wang Z J, Tian L, Cai C C, et al. Progressive damage and elastic-plastic behavior of CF/Al composites during transverse tensile process [J]. Chin. J. Nonferrous Met., 2019, 29: 458
|
|
王振军, 田 亮, 蔡长春 等. CF/Al复合材料横向拉伸渐进损伤与弹塑性力学行为研究 [J]. 中国有色金属学报, 2019, 29: 458
|
8 |
Zhou Y X, Yang W, Xia Y M, et al. An experimental study on the tensile behavior of a unidirectional carbon fiber reinforced aluminum composite at different strain rates [J]. Mat. Sci. Eng., 2003, 362A: 112
|
9 |
Jacquesson M, Girard A, Vidal-Sétif M H, et al. Tensile and fatigue behavior of al-based metal matrix composites reinforced with continuous carbon or alumina fibers: Part I. Quasi-unidirectional composites [J]. Metall. Mater. Trans., 2004, 35A: 3289
|
10 |
Wang Y G, Wang Y L, Wu G S. Preparation and mechanical properties of 3-D braided carbon composites [J]. J. Mater. Sci. Eng., 2004, 22: 344
|
|
王玉果, 王玉林, 吴广顺. 三维编织碳复合材料的制备及其力学性能研究 [J]. 材料科学与工程学报, 2004, 22: 344
|
11 |
Gao X. Study on the integrated performance of carbon fiber composites based on different three-dimensional woven structures [D]. Shanghai: Donghua University, 2017
|
|
高 雄. 基于不同三维机织结构的碳纤复合材料整体力学性能研究 [D]. 上海: 东华大学, 2017
|
12 |
Feng J P, Yu H, Xu Z F, et al. Microstructure and bending properties of three-dimensional orthogonal Cf/Al composites [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 202
|
|
冯景鹏, 余 欢, 徐志锋 等. 三维正交Cf/Al复合材料的显微组织与弯曲性能 [J]. 特种铸造及有色合金, 2020, 40: 202
|
13 |
Ahmed S, Zheng X T, Yan L L, et al. Influence of asymmetric hybridization on impact response of 3D orthogonal woven composites [J]. Compo. Sci. Technol., 2020, 199: 108326
doi: 10.1016/j.compscitech.2020.108326
|
14 |
Wan Y M, Sun B Z, Gu B H. Multi-scale structure modeling of damage behaviors of 3D orthogonal woven composite materials subject to quasi-static and high strain rate compressions [J]. Mech. Mater., 2016, 94: 1
doi: 10.1016/j.mechmat.2015.11.012
|
15 |
Naik N K, Azad N M, Prasad P D, et al. Stress and failure analysis of 3D orthogonal interlock woven composites [J]. J. Reinf. Plast. Compos., 2001, 20: 1485
doi: 10.1177/073168401772679110
|
16 |
Sun B Z, Liu Y K, Gu B H. A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite [J]. Composites, 2009, 40B: 552
|
17 |
Green S D, Matveev M Y, Long A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry [J]. Compos. Struct., 2014, 118: 284
doi: 10.1016/j.compstruct.2014.07.005
|
18 |
Wu G H, Jiang L T, Chen G Q, et al. Research progress on the control of interfacial reactions in metal matrix composites [J]. Mater. China, 2012, 31(7): 51
|
|
武高辉, 姜龙涛, 陈国钦 等. 金属基复合材料界面反应控制研究进展 [J]. 中国材料进展, 2012, 31(7): 51
|
19 |
Ten X F, Shi D Q, Cheng Z, et al. Investigation on non-uniform strains of a 2.5D woven ceramic matrix composite under in-plane tensile stress [J]. J. Eur. Ceram. Soc., 2020, 40: 36
doi: 10.1016/j.jeurceramsoc.2019.08.030
|
20 |
Zhang C, Xu X W, Yan X. General periodic boundary conditions and their application to micromechanical finite element analysis of textile composites [J]. Acta Aeronaut. Astronaut. Sin., 2013, 34: 1636
|
|
张 超, 许希武, 严 雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现 [J]. 航空学报, 2013, 34: 1636
|
21 |
Wang Z J, Wang Z Y, Xiong B W, et al. Micromechanics analysis on the microscopic damage mechanism and mechanical behavior of graphite fiber-reinforced aluminum composites under transverse tension loading [J]. J. Alloys Compd., 2020, 815: 152459
doi: 10.1016/j.jallcom.2019.152459
|
22 |
Gao H X, Wei G Z, Zhang X Y, et al. Effect of mixture rare earth on microstructures and mechanical properties of ZL301 alloy [J]. Spec. Cast. Nonferrous Alloys, 2014, 34: 973
|
|
高红选, 卫广智, 张晓燕 等. 混合稀土对ZL301合金组织及力学性能的影响 [J]. 特种铸造及有色合金, 2014, 34: 973
|
23 |
Hopkins D A, Chamis C C. A unique set of micromechanics equations for high-temperature metal matrix composites [A]. NASA TM 87154, Prepared for the First Symposium on Testing Technology of Metal Matrix Composites [C]. Sponsored by ASTM, Nashville, 1985: 18
|
24 |
Rossoll A, Moser B, Mortensen A. Tensile strength of axially loaded unidirectional Nextel 610TM reinforced aluminium: A case study in local load sharing between randomly distributed fibres [J]. Composites, 2012, 43A: 129
|
25 |
Dève H E. Compressive strength of continuous fiber reinforced aluminum matrix composites [J]. Acta Mater., 1997, 45: 5041
doi: 10.1016/S1359-6454(97)00174-2
|
26 |
Zhou J Q, Wang Z J, Yang S Y, et al. Damage evolution and fracture behaviors of continuous graphite fiber reinforced aluminium matrix composites subjected to quasi-static tensile loading [J]. Acta Mater. Compo. Sin., 2020, 37: 907
|
|
周金秋, 王振军, 杨思远 等. 连续石墨纤维增强铝基复合材料准静态拉伸损伤演化与断裂力学行为 [J]. 复合材料学报, 2020, 37: 907
|
27 |
Wang Y C, Huang Z M. Analytical micromechanics models for elastoplastic behavior of long fibrous composites: a critical review and comparative study [J]. Materials (Basel), 2018, 11: 1919
doi: 10.3390/ma11101919
|
28 |
Wang Z J, Yang S Y, Du Z H, et al. Micromechanical modeling of damage evolution and mechanical behaviors of CF/Al composites under transverse and longitudinal Tensile Loadings [J]. Materials (Basel), 2019, 12(19): 3133
doi: 10.3390/ma12193133
|
29 |
Xu Q, Qu S X. Irreversible deformation of metal matrix composites: A study via the mechanism-based cohesive zone model [J]. Mech. Mater., 2015, 89: 72
doi: 10.1016/j.mechmat.2015.06.003
|
30 |
Zhou Z Z, Xu Z F, Yu H, et al. Effects of braiding structures on microstructure and mechanical properties of 3D-Cf/Al composites [J]. Chin. J. Nonferrous Met., 2016, 26: 773
|
|
周珍珍, 徐志锋, 余 欢 等. 编织结构对3D-Cf/Al复合材料显微组织与力学性能的影响 [J]. 中国有色金属学报, 2016, 26: 773
|
31 |
Li D G, Chen G Q, et al. Effect of thermal cycling on the mechanical properties of Cf/Al composites [J]. Mater. Sci. Eng., 2013, 586A: 330
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|