Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (7): 502-510    DOI: 10.11901/1005.3093.2016.640
ARTICLES Current Issue | Archive | Adv Search |
Structure and Thermal Performances of Paraffin/Diatomite Form-stable Phase Change Materials
Sixie ZHAO, Hua YAN(), Yuntao LI, Hongtao WANG, Zhide HU
Department of Chemistry and Material Engineering, Logistic Engineering University, Chongqing 401311, China
Download:  HTML  PDF(3827KB) 
Export:  BibTeX | EndNote (RIS)      

The paraffin/diatomite form-stable phase change materials(PA/D-PCMs) was prepared by using solvent evaporation, diatomite as carrier and paraffin as phase change materials. The microstructure and thermal properties of PA/D-PCMs were characterized by SEM、FT-IR、DSC and TGA respectively. The results show that: Leakage of melting paraffin was hindered through both the hydrogen bonding and the capillary force of the pores of diatomite, hence PA/D-PCMs put up excellent thermal stability. At the same time, secondary pores of diatomite can restrict partial paraffin crystallization, crystallinity of which would be affected. In interior of diatomite there were a few conduction channels with intercommunication, which can enhance thermal conductivity of paraffin and accelerate paraffin heat storage and release. With increase of the paraffin content phonon scattering effect would become more fierce in X, Y and Z axis thermal conduction channel of PA/D-PCMs, so thermal conductivity of PA/D-PCMs diminish, but owning higher latent heat and crystallinity. In order to ensure PA/D-PCMs structure stable and have good thermal properties simultaneously, optimal paraffin fraction in the composite is 45%.

Key words:  material science      diatomite      paraffin/diatomite form-stable phase change materials      microstructure      crystallinity      thermal properties     
Received:  25 November 2016     
ZTFLH:  TQ314  
Fund: Supported by National Nature Science Foundation of China (No. 51272283)

Cite this article: 

Sixie ZHAO, Hua YAN, Yuntao LI, Hongtao WANG, Zhide HU. Structure and Thermal Performances of Paraffin/Diatomite Form-stable Phase Change Materials. Chinese Journal of Materials Research, 2017, 31(7): 502-510.

URL:     OR

Fig.1  Experimental apparatus of investigating curves of melting and frozen
Fig.2  Schematic plot for thermal conductivity test (a) and hotdisk probe (b)
Fig.3  Contact angles of DI-CA (a) and D3 (b)
Fig.4  SEM of DI-CP、DI-CA and PA/D-PCMs (a) DI-CP×2.7k, (b) DI-CP×5k, (c) DI-CA×2.3k, (d) DI-CA×5k, (e) PA/D-PCMs×2.7k, (f) PA/D-PCMs×5k
Fig.5  FT-IR spectra of PA、DI and PA/D-PCMs
Fig.6  External properties of sample at 20℃(a) and external properties of sample after heat leaching experiment (b)
  Fig.7 curve of weight loss ratio (a) and curve of weight loss rate (b)
Fig.8  DSC curve of PA/D-PCMs
Code Tonset/℃ Tpeak/℃ Tend/℃ ΔHD/Jg-1 ΔHT/Jg-1 Crystallinity/%
PA 50.5 61.5 66.5 212.9 212.9 -
D1 50.1 60.5 65.0 63.6 74.2 85.71
D2 50.0 60.1 64.8 75.8 85.1 89.07
D3 49.8 59.5 64.5 91.5 95.5 95.81
D4 50.3 59.4 64.3 96.8 104.3 92.76
Table 1  Melting temperature and latent heat of PA and PA/D-PCMs
Fig.9  Melting and frozen curves of D1、D3 and PA
Fig.10  Thermal conductivity of PA and PA/D-PCMs
Fig.11  Schematic of thermal conduction of diatomite (a) the state of diatomite and paraffin in the PA/D-PCMs; (b) thermal conduction on the X-Y plate; (c) thermal conduction on the Z axis direction
[1] Zalha B,Matl'Jn J M,Cabeza L F,et a1. Review on thermal energy storage with phase change: Material, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251
[2] Zhang Hongsheng, Wang Nan, Zhu Dongsheng, et, al.Study on performance of Nano-copper/paraffin wax composite phase change material[J]. Material Review, 2011, 17(5): 173(张鸿声, 汪南, 朱冬生, 等. 纳米铜粉/石蜡复合相变储能材料的性能研究[J]. 材料导报, 2011, 17(5): 173)
[3] Zheng Han.Synthesis and properties of clay-based phase change materials[D]. Lanzhou: Lanzhou university of technology, 2012(郑翰. 黏土基复合相变储热材料的制备及性能表征[D]. 兰州: 兰州理工大学, 2012)
[4] Konuklu Y.Microencapsulation of phase change material with poly shell for thermal energy storage[J]. International Journal of Energy Research, 2014, 38(15): 2019
[5] Wang Xiaochen.Preparation and characterization of diatomite/paraffin form-stable phase change material[D]. Shengyang: Northeastern University, 2014(王小辰. 硅藻土/石蜡定形相变储能材料的制备与性能表征[D] . 沈阳: 东北大学, 2014)
[6] Zhang Hong, WU Xiaohua,WANG Xiaolei,et, al.Structure and properties of lauric acid/ cetyl alcohol/silicon dioxide composite phase change Material[J]. Journal of materials science& engineering, 2010, 28(5): 672(张鸿, 武晓华, 王晓磊, 等. 月桂酸/十六醇/二氧化硅定型相变材料的结构与性能[J]. 材料科学与工程学报, 2010, 28(5): 672)
[7] Min Li, Zhishen Wu, Jinmiao Tan.Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol-gel method[J]. Applied Energy, 2012, 92: 456
[8] Huang Xue, CUI Yingde, YIN Guoqiang, et al.Preparation and performance of lauric acid-expanded graphite composite phase change materials[J]. CIESC Journal, 2015, 5(S1): 370(黄雪, 崔英德, 尹国强, 等. 月桂酸-膨胀石墨定型相变材料的制备及性能[J]. 化工学报, 2015, 5(S1): 370)
[9] Ma Feng, Li Fei, Chen Minghui, et al.Study on performance of palmitic acid-hexadecanol/expanded perlite composite phase change materials[J]. Acta Engerglae Solaris Sinica, 2010, 31(11): 1475(马烽, 李飞, 陈明辉等. 棕榈酸-十六醇/膨胀珍珠岩定型相变材料的性能研究[J]. 太阳能学报, 2010, 31(11): 1475)
[10] Li Yuntao, Yan hua, Wang Hongtao, et al. Characterization of microstructure and property for phase change materials of expanded graphite matrix composite[J]. Chinese Journal of materials research, 2016, 30(7): 5456(李云涛, 晏华, 汪宏涛, 余荣升. 膨胀石墨基复合相变材料的结构与性能研究[J].材料研究学报, 2016, 30(7): 5456)
[11] Fang Tang, Di Su, Yaojie, et al. Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape-stabilized phase change materials with enhanced thermal conductivity[J]. Solar Energy Materials & Solar Cells, 2015, 141: 218
[12] Fu Lujun, Dong Faqin, He Ping, et al.Study on preparation and properties of capric—myristic acid/diatomite form—stable phase change energy storage materials[J]. Journal of functional material, 2013, 44(10): 1465(付路军, 董发勤, 何平, 等. 癸酸-肉豆蔻酸/硅藻土定形相变储能材料制备及性能研究[J]. 功能材料, 2013, 44(10): 1465)
[13] Jiangshan Zhang, Xiang Zhang, Yazhen Wan.Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form-stable phase change material[J]. Solar energy, 2012, 86: 1142
[14] Biwan Xu, Zongjin Li.Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites[J]. Energy, 2014, 72: 371
[15] Xiangyu Li, Jay G. Sanjayan, John L.Wilson. Fabrication and stability of form-stable diatomite/paraffin phase change material composites[J]. Energy and Buildings, 2014, 76: 284
[16] Song Xiulong, Kang Hong, Gao Xiaohua, et al.Preparation and properties of composite phase change material of diatomite/ n-octadecane with high enthalpy. Material review, 2015, 29(9): 40(宋秀龙, 康虹, 高向华, 等. 硅藻土吸附正十八烷高相变焓定型相变材料的制备及其性能研究[J]. 材料导报, 2015, 29(9): 40)
[17] Xi Guoxi, Yang Wenjie.Preparation and Study of Stearic Acid/Modified Kieselguhr Composite Phase Change Material[J]. Material review, 2009, 23(8): 45(席国喜, 杨文洁. 硬脂酸/改性硅藻土复合相变储能材料的制备及性能研究[J]. 材料导报, 2009, 23(8): 45)
[18] Radhakrishnan, R., Gubbins, K.E Free energy studies of freezing in slit pores: an order-parameter approach using Monte Carlo simulation[J]. Molecular Physics, 1999, 96(8): 1249
[19] Radhakrishnan R., Gubbins K.E.,Watanabe A., et Freezing of simple fluids in microporous activated carbon fibers: Comparison of simulation and experiment[J]. Chemical Physics, 1999, 111(19): 9058
[20] Chongyun Wang, Lili Feng,Wei Li, et, al. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: The influence of the pore structure of the carbon materials[J]. Solar Energy Materials & Solar Cells, 2012, 105: 21
[21] Li Chuanchang.Preparation and Property Control of Mineral-based Composite Thermal Storage Materials[D]. Changsha: Central south university, 2013(李传常. 矿物基复合储热材料的制备与性能调控[D]. 长沙: 中南大学, 2013)
[22] Yang Yuxiang, Chen Rongsan, Dai Anbang.A study on structure of local diatomite[J]. Acta Chimica Sinica, 1996, 54: 57(杨宇翔, 陈荣三, 戴安邦. 国产硅藻土结构的研究[J]. 化学学报, 1996, 54: 57)
[23] Chao You, Jueshi Qian, Jihui Qin, et al.Effect of early hydration temperature on hydration product and strength Development of magnesium phosphate cement(MPC)[J]. Cement and Concrete Research, 2015, 78: 179
[24] Zhang Yi, Zhang Jingyan, Huang Bin, et al.Experimental test of thermal conductivity coefficient and heat transfer simulation analysis of fatty acids phase change material[J]. Journal of functional material, 2015, 14(3): 1950(张毅, 张菁燕, 黄斌, 等. 脂肪酸相变材料导热系数测试及相变传热过程的数值模拟[J]. 功能材料, 2015, 2015, 14(3): 1950)
[25] Zhang Dong.Experimental study on the thermal conductivity of organic phase change composites[J]. Journal of building materials, 2008, 11(1): 42(张东. 有机相变蓄热复合材料导热性能的实验研究[J].建筑材料学报, 2008, 11(1): 42)
[26] Zhang Fan, Guo Yiping, Zhou Wei.Properties of Materials[M]. Shanghai: Shanghai Jiaotong University press, 2009(张帆, 郭益平, 周伟. 材料性能学[M]. 上海: 上海交通大学出版社, 2009)
[27] S. N. Goyanes, M. R B.Varela, M. C. Mariani, et al. Influence of carbon black dispersion on the thermal diffusivity of an SBR vulcanizate[J]. Journal of Applied Polymer Science, 1999, 72(11): 1379
[1] SUN Jingli,ZHOU Haitao,CHEN Li,WU Hong,LIU Weili,YAO Fei,XU Yuling. Grain Size Effect on Microstructure Evolution and Properties of 304 Austenitic Stainless Steel[J]. 材料研究学报, 2020, 34(3): 231-240.
[2] JIA Jianbo,LU Chao,YANG Zhigang,DONG Tiantian,GU Yongfei,XU Yan. Effect of Solution- and Aging-treatment on Microstructure and Microhardness of a Powder Metallurgy Ti-22Al-25Nb Alloy[J]. 材料研究学报, 2020, 34(3): 198-208.
[3] YUE Ke, LIU Jianrong, YANG Rui, WANG Qingjiang. Primary Creep and Steady-State Creep of Ti65 Alloy[J]. 材料研究学报, 2020, 34(2): 151-160.
[4] FENG Jiawei,NIU Mengchao,WANG Wei,SHAN Yiyin,YANG Ke. Relationship Between Mechanical Behavior and Microstructure for an Ultra-high Strength Maraging Steel[J]. 材料研究学报, 2019, 33(9): 641-649.
[5] CAO Leigang,ZHU Lin,ZHANG Leilei,WANG Hui,CUI Yan,YANG Yue,LIU Fengbin. Microstructure Evolution and Mechanical Properties of Rapid Solidified AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 材料研究学报, 2019, 33(9): 650-658.
[6] Nan GAO, Yan LONG, Haiyan PENG, Weihua ZHANG, Liang PENG. Microstructure and Mechanical Properties of TiVNbTa Refractory High-Entropy Alloy Prepared by Powder Metallurgy[J]. 材料研究学报, 2019, 33(8): 572-578.
[7] Tianyou ZHAO, Erjun GUO, Yicheng FENG, Sicong ZHAO, Yuanke FU, Liping WANG. Microstructure and Mechanical Properties of as Cast and Heat-treated Al-Si-Cu-Ni-Ce-Cr[J]. 材料研究学报, 2019, 33(8): 588-596.
[8] Wenru CHAI,Jingchao CHEN,Shengdan LIU,Lingying YE,Huaqiang LIN,Xinming ZHANG. Effect of Minor Zr Addition on Exfoliation Corrosion Resistance of Al-Zn-Mg-Mn Alloy Sheet[J]. 材料研究学报, 2019, 33(7): 488-496.
[9] Huanying SUN,Jun ZHAO,Yi'an LIU,Quan ZHANG,Jingxia CAO,Xu HUANG. Effect of C Addition on Microstructure and Mechanical Properties of Ti-V-Cr Burn Resistant Titanium Alloys[J]. 材料研究学报, 2019, 33(7): 537-542.
[10] Kunmao Li,Jing LIU,Xiaoyan ZHANG,Hong LI,Yan DAI. Corrosion Behavior of Carburized Ti6Al4V Ti-alloy in HF Solution[J]. 材料研究学报, 2019, 33(7): 543-551.
[11] Shanjiang WU,Junfeng WANG,Shuwei ZHONG,Jianbo ZHANG,Hang WANG,Bin YANG. Effect of Trace Mg Addition on Precipitation Behavior and Properties of Cu-Cr Alloy[J]. 材料研究学报, 2019, 33(7): 552-560.
[12] Yingdong ZHANG,Geping LI,Chengze LIU,Fusen YUAN,Fuzhou HAN,Muhanmmad Ali,Hengfei GU. Microstructure Evolution of α''-Phase and α'-Phase and Microhardness of TC11 Titanium Alloy[J]. 材料研究学报, 2019, 33(6): 443-451.
[13] Shuo HUANG,Yuwei HE,Guohua XU,Ran DUAN,Lei WANG,Guangpu ZHAO. Effects of Vanadium on Microstructure and Mechanical Properties of a Wrought Nickel-based Superalloy[J]. 材料研究学报, 2019, 33(6): 419-426.
[14] Jian TU,Lei LIU,Shirun DING,Jianbo LI,Zhiming ZHOU,Anping DONG,Can HUANG. Effect of Degree and Temperature of Pre-deformation on Deformation Mechanism and Subsequent Recrystallization Behavior of High-entropy Alloy CoCrFeMnNi[J]. 材料研究学报, 2019, 33(6): 427-434.
[15] Wenjing MA,Zhiguo CHEN,Hongjuan LI,Zhengui YUAN,Ziqiao ZHENG. Process and Mechanism of Novel Heat Treatment for Controlling Residual Stress in Al-Cu-Mg Alloy[J]. 材料研究学报, 2019, 33(6): 435-442.
No Suggested Reading articles found!