Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (5): 393-400    DOI: 10.11901/1005.3093.2015.434
研究论文 Current Issue | Archive | Adv Search |
Preparation and Performance of Polypropylene Nano-composites Toughened-Reinforced Synergetically with Functionalized Graphene and Elastomer
LIN Hailan**(), SHEN Yajun, WANG Zhengjun, ZHOU Xing, WANG Gang, BIAN Jun
College of Materials Science and Engineering, Xi-Hua University, Chengdu 610039, China
Cite this article: 

LIN Hailan, SHEN Yajun, WANG Zhengjun, ZHOU Xing, WANG Gang, BIAN Jun. Preparation and Performance of Polypropylene Nano-composites Toughened-Reinforced Synergetically with Functionalized Graphene and Elastomer. Chinese Journal of Materials Research, 2016, 30(5): 393-400.

Download:  HTML  PDF(798KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Using ethylenediamine functionalized graphene (GS-EDA) as nano-filler and maleic anhydride grafted polyolefin elastomer (POE-g-MAH) as toughening agent, the PP/POE-g-MAH/GS-EDA nanocomposites were prepared by melt blending method. The morphology and properties of nano-filler and the prepared nanocomposites were characterized in detail by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), differential scanning calorimetric analysis (DSC), thermogravimetric analysis (TGA), mechanical properties, thermal deformation temperature and melt flow rate tests. The results indicated that EDA was successfully grafted onto GS. The reactions between the GS-EDA and POE-g-MAH could improve effectively the interfacial compatibility of blending systems and the dispersion of GS-EDA in the matrix. The tensile strength, elastic modulus and impact strength of the nanocomposites with 0.5 mass% GS-EDA increased by 25.2%, 32.5% and 26.9% respectively in comparison with those of PP/POE-g-MAH without GS-EDA. The comprehensive mechanical performance could also be acquired for the PP/POE-g-MAH/GS-EDA nanocomposite with 0.5 mass% GS-EDA. The crystalline temperature, melting temperature and the degree of crystalline of the PP/POE-g-MAH/GS-EDA composites increased due to the GS-EDA incorporation. The thermal stability of all the PP/POE-g-MAH/GS-EDA composites is improved, while the melt flow rate decreased gradually, with the addition of GS-EDA.

Key words:  composite      functionalized graphene      polypropylene      mechanical property      thermal property     
Received:  01 August 2015     
ZTFLH:  TQ325.1+4  
Fund: *Supported by the National College Students' Innovation and Entrepreneurship Training Programs No.201510623033;the Key Laboratory Open Research Fund Project of Special Material and Its Preparation Technology of Universities in Sichuan Province Nos.szjj2015-084 & szjj2015-086 and Xihua University "Xihua Cup" Fund Project No.2016-XX
About author:  **To whom correspondence should be addressed, Tel: (028)87720514, E-mail: linhailan2003@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.434     OR     https://www.cjmr.org/EN/Y2016/V30/I5/393

Fig.1  FTIR spectra of GO and GS-EDA
Fig.2  The process of oxidation, grafting of NGP, as well as the interaction mechanism between POE-g-MAH and GS-EDA
Fig.3  The mechanical properties of PP/POE-g-MAH/GS-EDA nanocomposites with different GS-EDA contents (a) the tensile strength and elongation at break; (b) the elastic modulus and impact strength
Fig.4  The SEM images of impact fractures of PP/POE-g-MAH/GS-EDA nanocomposites with different GS-EDA content. (a) without GS-EDA, (b) 0.25% GS-EDA, (c) 0.5% GS-EDA, (d) 1% GS-EDA
Fig.5  SEM images of tensile fractures of PP/POE-g-MAH/GS-EDA nanocomposites with different GS-EDA content. (a) without GS-EDA, (b) 0.25% GS-EDA, (c) 0.5% GS-EDA, (d) 1% GS-EDA
Fig.6  DSC heating (a) and cooling (b) curves of pure PP, PP/POE-g-MAH and PP/POE-g-MAH/GS-EDA composites with 0.5% and 1% GS-EDA mass fraction
Fig.7  Thermal gravimetric curves of pure PP, PP/POE-g-MAH and PP/POE-g-MAH/GS-EDA composites with 0.5% and 1% GS-EDA mass fraction: (a)-TGA; (b)-DTA
Fig.8  The MFR of PP/POE-g-MAH/GS-EDA nanocomposites with different GS-EDA contents
1 Wang Y, Zhang Q, Na B, Du R N, Fu Q, Shen K Z, Dependence of impact strength on the fracture propagation direction in dynamic packing injection molded PP/EPDM blends, Polymer, 44(15), 4261(2003)
2 Yoon L K, Choi C H, Kim B K, Reactive extrusion of PP/natural rubber blends, Journal of Applied Polymer Science, 56(2), 239(1995)
3 LIU Xiaohui, HUANG Ying, LI Yuzhong, Research on the mechanical property of different PP/EPDM blends, Plastics, 2, 30(1997)
(刘晓辉, 黄英, 李郁忠, 不同PP/EPDM共混物力学性能研究, 塑料, 2, 30(1997))
4 LI Huaxing, ZHANG Xiangcheng, Research on the SBS and LLDPE modified polypropylene powder, China Plastices, 3(3), 20(1989)
(郦华兴, 张祥成, SBS及LLDPE改性聚丙烯粉料的研究, 中国塑料, 3(3), 20(1989))
5 Gupta A K, Punwar S N, Dynamic mechanical and impact properties of PP/SEBS blend, Journal of Applied Polymer Science, 31(2), 535(1996)
6 LIU Yi, ZHANG Hongxia, SHAO Yuejun, Mechanical properties and compatibility of PP/LLDPE blends, Petrochemical Industry Application, (5), 10(2006)
(刘义, 张红霞, 邵月君, PP/LLDPE共混体系性能及相容性研究, 石油化工应用, (5), 10(2006))
7 YANG Qi, TIAN Yechun, MAO Yuming, Crystallization behavior and compatibility of PP/LLDPE blends, Polymer Materials Science and Engineering, 9(5), 155(2004)
(杨琪, 田野春, 毛益民, PP/LLDPE共混体系的相容性及结晶行为, 高分子材料科学与工程, 9(5), 155(2004))
8 Lehmann B, Friedrich K, Wu C L, Improvement of notch toughness of low nano-SiO2 filled polypropylene composites , Journal of Materials Science Letters, 22(14), 1027(2003)
doi: 10.1023/A:1024749627887
9 Rong M Z, Zhang M Q, Zheng Y X, Zeng H M, Friedrich K, Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism, Polymer, 42(7), 3301(2001)
10 Wu C L, Zhang M Q, Rong M Z, Friedrich K, Silica nano-particles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites, Composites Science and Technology, 65, 635(2005)
11 ZHOU Tonghui, RUAN Wenhong, WANG Yuelin, RONG Minzhi, ZHANG Mingqiu, Polypropylene composites with nano-silica modified by in-situ grafting polymerization I: structure characterization, Acta Materiae Composites Sinica, 23(2), 71(2006)
(周彤辉, 阮文红, 王跃林, 容敏智, 章明秋, 原位接枝改性纳米二氧化硅/聚丙烯复合材料I: 结构表征, 复合材料学报, 23(2), 71(2006))
12 Friedrich Klaus, RONG Minzhi, ZHANG Mingqiu, Microstructural analysis of nanosilica reinforced polypropylene composites , Acta Materiae Composites Sinica, 23(1), 44(2006)
(Friedrich Klaus, 容敏智, 章明秋, 纳米SiO2/聚丙烯复合材料的微观结构, 复合材料学报, 23(1), 44(2006))
13 Rong M Z, Zhang M Q, Pan S L, Interfacial effects in polypropylene-silica nanocomposites, Journal of Applied Polymer Science, 92(3), 1771(2004)
14 XU Weibing, GE Mingliang, HE Pingsheng, Preparation and property of polypropylene/montmorillonite nanocomposites, China Plastices, 14(11), 27(2000)
(徐卫兵, 戈明亮, 何平笙, 聚丙烯/蒙脱土纳米复合材料的制备与性能, 中国塑料, 14(11), 27(2000))
15 Geim A K, Novoselov K S, The rise of grapheme, Nat. Mater., 6(3), 183(2007)
16 Stankovich S, Dikin D A, Dommett G H B, Kohlhass K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S, Graphene-based composite materials, Nature, 442(7100), 282(2006)
17 Huang X, Qi X Y, Boey F, Zhang H, Graphene-based composites, Chem. So.c Rev., 41(2), 666(2012)
18 Kalaitzidou K, Fukushima H, Drzal L T, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets, Carbon, 45(7), 1446(2007)
doi: 10.1016/j.carbon.2007.03.029
19 Li Y F, Zhu J H, Wei S Y, Ryu J, Sun L Y, Guo Z H, Poly(Propylene)/graphene nanoplatelet nanocomposites: melt rheological behavior and thermal, electrical, and electronic properties, Macromolecular Chemistry and Physics, 212(18), 1951(2011)
doi: 10.1002/macp.201100263
20 Yun Y S, Bae Y H, Kim D H, Lee J Y, Chin I J, Jin H J, Reinforcing effects of adding alkylated graphene oxide to polypropylene, Carbon, 49(11), 3553(2011)
doi: 10.1016/j.carbon.2011.04.055
21 Hsiao M C, Liao S H, Lin Y F, Wang C A, Pu N W, Tsai H M, Ma C C M, Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite, Nanoscale, 3(4), 1516(2011)
22 QIU Feng, LI Xiaoyun, WANG Ming, Structure and property of polypropylene/modified graphene oxide composites, Proceedings of the National Symposium on polymer materials science and Engineering(Wuhan, 2012, the second volume)
(邱峰, 李筱芸, 王明, 聚丙烯/改性氧化石墨烯复合材料结构及性能研究, 全国高分子材料科学与工程研讨会学术论文集 (武汉, 2012, 下册))
23 YANG Feng, BIAN Jun, HE Feixiong, LIN Hailan, WANG Gang, ZHOU Qiang, LI Sisi, HU Wenmei, LU Yun, Preparation and properties of PP/PP-g-MAH/GS-EDA nanocomposites, Engineering Plastics Application, 42(9), 1(2014)
(杨峰, 卞军, 何飞雄, 蔺海兰, 王刚, 周强, 李丝丝, 胡文梅, 鲁云, PP/PP-g-MAH/GS-EDA 纳米复合材料的制备及性能, 工程塑料应用, 42(9), 1(2014))
24 HE Feixiong, BIAN Jun, LIN Hailan, YANG Feng, ZHOU Qiang, WANG Gang, Preparation and characterization of functionalized graphene sheet/PP-PP-g-MAH composites , Acta Materiae Composites Sinica, 32(1), 47(2015)
(何飞雄, 卞军, 蔺海兰, 杨峰, 周强, 王刚, 功能化纳米石墨烯片/PP-PP-g-MAH 复合材料的制备与表征, 复合材料学报, 32(1), 47(2015))
doi: 10.13801/j.cnki.fhclxb.20140410.001
25 LIU Yaqing, LU Menghai, XIAO Peng, Grafting of maleic anhydride on POE by reactive extrusion, Engineering Plastics Application, 29(10), 17(2001)
(刘亚庆, 吕孟海, 肖鹏, POE 与马来酸酐的反应挤出接枝, 工程塑应用, 29(10), 17(2001))
26 ZHU Jingyun, DU Jingqiang, ZHAO Heying, Study on properties of PP modified with POE, China Synthetic Resin and Plastics, 24(1), 14(2007)
(祝景云, 杜建强, 赵和英, POE改性PP的性能研究, 合成塑脂和塑料, 24(1), 14(2007))
27 Thongruang W, Spontak R J, Balik C M, Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber, Polymer, 43(8), 2279(2002)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[7] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!