Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (11): 814-820    DOI: 10.11901/1005.3093.2014.267
Current Issue | Archive | Adv Search |
Preparation and Performance of SiC Foam Ceramic/Fe Matrix Co-continuous Phase Composites
Zhiheng REN,Peng JIN,Xiaoming CAO,Jinsong ZHANG()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Zhiheng REN,Peng JIN,Xiaoming CAO,Jinsong ZHANG. Preparation and Performance of SiC Foam Ceramic/Fe Matrix Co-continuous Phase Composites. Chinese Journal of Materials Research, 2014, 28(11): 814-820.

Download:  HTML  PDF(3468KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

SiC foam ceramic/Fe based co-continuous phase composites were prepared by squeeze casting method using oxidized SiC foam ceramic. Then the prepared composites were annealed. The influence of preparation process and SiC volume fraction on microstructures and mechanical properties of the composites were investigated. Results show that a SiO2 barrier film of 1 mm in thickness on the surfaces of SiC foam can form after oxidizing at 1250°C for 48 h, which then can efficiently prevent the formation of a brittle intermetallic compound Fe3Si at the interface of Fe matrix and SiC during the preparation of composites. As a result, the flexural strength of composites was increased by 100% and compressive strength by 18%. The thickness of SiO2 film was increased after oxidizing at 1250°C for 72 h, and a thicker SiO2 film may induce mismatch of thermal expansion coefficient between SiO2, Fe and SiC, which thereby resulted in the increase of residual stress. Therefore, the mechanical properties of composites were decreased slightly. The residual stress could be relieved after annealing of composites at 600°C for 4 h, which improved the mechanical properties of composites. The function of bridging and deflecting crack of metal matrix is big for the composite with small SiC volume fraction, which is in turn beneficial to the enhancement of the flexural strength and flexural strain. For the composite with the higher SiC volume fraction, the size of SiC skeleton became bigger and the load-carrying capacity was strengthened, thereby its compressive strength was increased.

Key words:  composites      foam ceramic      SiO2 reaction inhibitor      mechanical property     
Received:  28 May 2014     
Fund: 

*Supported by National High Technology Research and Development Program of China No.2012AA03A508.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.267     OR     https://www.cjmr.org/EN/Y2014/V28/I11/814

Fig.1  Morphologies of SiC foam ceramic, (a) macroscopy, (b) microscopy
Element C Si P S Mn Mg RE Fe
Content 4.2 1.63 0.076 0.029 0.26 0.08 0.016 Balance
Table 1  Composition of matrix in SiC/Fe composite (mass fraction, %)
Fig.2  XRD pattern of SiC foam ceramic
Fig.3  Morphology of SiC foam ceramic after 48 h oxidation treatment at 1250℃ (a) macroscopy, (b) microscopy
Fig.4  XRD pattern of SiC foam ceramic after oxidation treatment
Fig.5  Microstructures of composites with untreatment (a) and oxidation treatment (b)
Fig.6  XRD patterns of composites with different treatments
Fig.7  Microstructures of SiC foam ceramics after oxidation for 48 h (a) and 72 h (b)
Fig.8  Influence of oxidation on the mechanical properties of composites
Flexural stress Compressive stress
σbb/MPa k* σbc/MPa l**
Untreatment 64.97 499.12
Oxidation 48 h 130.83 2.01 589.93 1.18
Oxidation 72 h 109.97 1.69 580.47 1.16
Table 2  Comparison of mechanical properties between composites with different oxidation treatments of SiC foam ceramics
Fig.9  Influence of annealing on the mechanical properties of composites
Flexural stress Compressive stress
σbb/MPa m*** σbc/MPa n****
Untreatment 130.83 589.93
600℃ annealing 142.17 1.09 634.12 1.07
750℃ annealing 123.56 0.94 543.92 0.92
Table 3  Comparison of mechanical properties between composites with different annealing treatments
Fig.10  Relationship between compressive stress-strain of composites and SiC volume fraction
Fig.11  Relationship between flexural stress-displacement of composites and SiC volume fraction
1 CHEN Weiping,YANG Shaofeng, HAN Mengyan, Research development of ceramic/Fe-based alloy composites, The Chinese Journal of Nonferrous Metals, 20(2), 257(2010)
1 (陈维平, 杨少锋, 韩孟岩, 陶瓷/铁基合金复合材料的研究进展, 中国有色金属学报, 20(2), 257(2010))
2 NIE Cunzhu,ZHAO Naiqin, Review of metal-matrix composite materials for electronic packaging, Heat Treatment of Metals, 28(6), 1(2003)
2 (聂存珠, 赵乃勤, 金属基电子封装复合材料的研究进展, 金属热处理, 28(6), 1(2003))
3 HAN Hui,LI Jun, JIAO Lijuan, LI Nan, Study on the application of ceramic-metal composite materials in bulletproof field, Materials Review, 21(2), 34(2007)
3 (韩 辉, 李 军, 焦丽娟, 李 楠, 陶瓷-金属复合材料在防弹领域的应用研究, 材料导报, 21(2), 34(2007))
4 D. R. Clarke,Interpenetrating phase composites, Journal of the American Ceramic Society, 75(4), 739(1992)
5 C. San Marchi, M. Kouzeli, R. Rao, J. A. Lewis, D. C. Dunand,Alumina–aluminum interpenetrating-phase composites with three-dimensional periodic architecture, Scripta Materialia, 49(9), 861(2003)
6 M. L. Young, J. D. Almer, U. Lienert, D. R. Haeffner, R. Rao, J. A. Lewis, D. C. Dunand,Diffraction measurements of load transfer in interpenetrating-phase Al2O3/Al composites, in: Affordable Metal Matrix Composites for High-Performance Applications, edited by A. B. Pandey, K. L. Kending, T. J. Watson (Pennsylvania, TMS, 2003)p.225
7 XIE Sujing,CAO Xiaoming, ZHANG Jinsong, LI Shu, LIU Yang, Effect of 3D-meshy SiC on the dry friction and wear of aluminum alloys, Chinese Journal of Materials Research, 17(1), 10(2003)
7 (谢素菁, 曹小明, 张劲松, 李 曙, 刘 阳, 三维网络SiC对铝合金干摩擦磨损性能的影响, 材料研究学报, 17(1), 10(2003))
8 XING Hongwei,CAO Xiaoming, HU Wanping, TIAN Chong, ZHAO Longzhi, ZHANG Jinsong, Solidification microstructure of 3D-meshy SiC/Cu metal matrix composites, Chinese Journal of Materials Research, 18(6), 597(2004)
8 (邢宏伟, 曹小明, 胡宛平, 田 冲, 赵龙志, 张劲松, 三维网络SiC/Cu金属基复合材料的凝固显微组织, 材料研究学报, 18(6), 597(2004))
9 S. Sharma,N. E. Rayess, N. Dukhan, Preliminary Nvh characterization of metal foam-polymer interpenetrating phase composites, in: Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2009 (New York, ASME, 2010)p.445
10 FENG Shengshan,WANG Zejian, LIU Qingfeng, XU Shunhong, LI Jinshan, WANG Cungui, Damping characteristics of three-dimensional co-continuous network SiC/cast iron composites, Foundry Equipment and Technology, (4), 7(2009)
10 (冯胜山, 王泽建, 刘庆丰, 许顺红, 李金山, 王存贵, 三维连续网络结构碳化硅铸铁铸态复合材料的减振性能, 铸造设备与工艺, (4), 7(2009))
11 FENG Shengshan,WANG Zejian, LIU Qingfeng, YANG Zongming, Friction and abrasion characteristics of three-dimensional co-continuous network SiC/cast iron composites, Foundry Technology, 31(1), 56(2010)
11 (冯胜山, 王泽建, 刘庆丰, 杨宗明, 三维连续网络结构碳化硅/铸铁复合材料的摩擦磨损性能, 铸造技术, 31(1), 56(2010))
12 WEI Wentao,The preparation, microstructure and properties of the new type 3D-meshy SiC/Cu-Fe composite material, Master’s Dissertation (Northeastern University, 2009)
12 (魏文韬, 新型三维网络SiC/Cu-Fe复合材料的制备、组织与性能, 硕士学位论文 (东北大学, 2009))
13 W. M. Tang, Z. X. Zheng, H. F. Ding, Z. H. Jin,Control of the interface reaction between silicon carbide and iron, Materials Chemistry and Physics, 80(1), 360(2003)
14 B. S. Terry, O. S. Chinyamakobvu,Assessment of the reaction of SiC powders with iron-based alloys, Journal of Materials Science, 28(24), 6779(1993)
15 TANG Wenming,ZHENG Zhixiang, DING Houfu, JIN Zhihao, Progress in studies of the interface reaction and the interface optimization of Fe/SiC system, Ordnance Material Science and Engineering, 22(4), 64(1999)
15 (汤文明, 郑治祥, 丁厚福, 金志浩, Fe/SiC界面反应机理及界面优化工艺研究的进展, 兵器材料科学与工程, 22(4), 64(1999))
16 TANG Wenming,ZHENG Zhixiang, DING Houfu, JIN Zhihao, Oxidation of SiC and its effect on the interface stability of SiC/Fe, Journal of Inorganic Materials, 16(2), 289(2001)
16 (汤文明, 郑治祥, 丁厚福, 金志浩, SiC表面氧化及其对SiC/Fe界面稳定性的影响, 无机材料学报, 16(2), 289(2001))
17 SHI Lei,LIU Junwu, WANG Zhixiang, WANG Xiang, ZHENG Zhixiang, The effect of coated SiC powders on the sintering and mechanical properties of the SiCp/Fe composites, Journal of Hefei University of Technology, 23(2), 177(2000)
17 (石 磊, 刘君武, 王支相, 汪 翔, 郑治祥, SiC颗粒表面改性对SiCp/Fe烧结及性能的影响, 合肥工业大学学报(自然科学版), 23(2), 177(2000))
18 WANG Zejian,Study on the preparation and properties of three-dimensional co-continuous network SiC/Cast iron composites, Master Dissertation (Hubei University of Technology, 2009)
18 (王泽建, 三维连续网络结构碳化硅陶瓷/铸铁复合材料的制备方法及性能研究, 硕士学位论文 (湖北工业大学, 2009))
19 M. Hoffman, S. Skirl, W. Pompe, J. Rodel,Thermal residual strains and stresses in Al2O3/Al composites with interpenetrating networks, Acta Materialia, 47(2), 565(1999)
20 P. Agrawal, K. Conlon, K. J. Bowman, C. T. Sun, F. R. Cichocki, Jr., K. P. Trumble,Thermal residual stresses in co-continuous composites, Acta Materialia, 51(4), 1143(2003)
21 ZHANG Jinsong,CAO Xiaoming, TIAN Chong, HU Wanping, YANG Yongjin, Compact foamy thyrite in high intensity and preparation method, China patent, CN1600742A (2005)
21 (张劲松, 曹小明, 田 冲, 胡宛平, 杨永进, 一种高强度致密的泡沫碳化硅陶瓷材料及其制备方法, 中国专利, CN1600742A(2005))
22 ZHENG Chuanwei,High temperature oxidation behavior of several silicon carbide ceramics processed by reaction bonding method, PhD Dissertation (Institute of Metal Research, Chinese Academy of Sciences, 2009)
22 (郑传伟, 几种反应烧结碳化硅陶瓷材料的高温氧化行为研究, 博士学位论文 (中国科学院金属研究所, 2009))
23 C. Zheng, Z. Yang, J. Zhang,The high-temperature oxidation behavior of reaction-bonded porous silicon carbide ceramics in dry oxygen, Journal of the American Ceramic Society, 93(7), 2062(2010)
24 ZHANG Guoding,Interfaces in metal matrix composites, Chinese Journal of Materials Research, 11(6), 649(1997)
24 (张国定, 金属基复合材料界面问题, 材料研究学报, 11(6), 649(1997))
25 CUI Chunxiang,WU Renjie, WANG Haowei, Characteristics of interface and mechanical properties of MMCs, Aerospace Materials & Technology, 1(1997)
25 (崔春翔, 吴人杰, 王浩伟, 金属基复合材料界面特征与力学性能, 航空材料工艺, 1(1997))
26 FAN Dongli, PAN Jiansheng, XU Yueming, TONG Xiaohui, China Materials Engineering Canon (Vol.15) (Beijing, Chemical Industry Press, 2005) p.249
26 (249)
27 ZHENG Chuanwei,YANG Zhenming, TIAN Chong, CAO Xiaoming, ZHANG Jinsong, Oxidation characteristics of silicon carbide foam ceramic at elevated temperature, Rare Metal Materials and Engineering, 38(z3), 289(2009)
27 (郑传伟, 杨振明, 田 冲, 曹小明, 张劲松, SiC泡沫陶瓷材料的高温氧化行为, 稀有金属材料与工程, 38(z3), 289(2009))
[1] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[8] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] NIE Jingjing, GONG Zhengxuan, SUN Jingli, YANG Sida, XIA Xianchao, XU Aijie. Microstructure and Properties of Butt Welding Joints of 2195-2219 Al-alloy Plates[J]. 材料研究学报, 2023, 37(2): 152-160.
[10] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[11] WANG Guotian, LONG Zekun, WU Biao, WANG Qiang, DING Hongsheng. Effects of Pulse Current on the Microstructure and Properties of Directionally Solidified TiAl Based Alloy in Cold Crucible[J]. 材料研究学报, 2022, 36(9): 706-714.
[12] LIU Fenghua, ZHAO Wenhao, CAI Changchun, WANG Zhenjun, SHEN Gaofeng, ZHANG Yingfeng, XU Zhifeng, YU Huan. Damage Evolution and Fracture Behavior of Three-directional Orthogonal Fiber Reinforced Aluminum Matrix Composites under Longitudinal Tensile Loading[J]. 材料研究学报, 2022, 36(7): 500-510.
[13] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[14] HUANG Huan, ZHANG Xuntao, YANG Shangke, XIAO Liuxin, ZHANG Zhaoxin, YAN Lei, LIN Hailan, BIAN Jun, CHEN Daiqiang. Properties of Nylon PA6-based Nanocomposites Co-modified with Graphene Oxide/sodium Benzoate Complex Nucleating Agent[J]. 材料研究学报, 2022, 36(6): 416-424.
[15] ZHOU Haitao, HOU Xiangwu, WANG Yanbo, XIAO Lv, YUAN Yong, SUN Jingli. High-temperature Deformation Behavior and Properties of High Nb Containing TiAl Alloy[J]. 材料研究学报, 2022, 36(6): 471-480.
No Suggested Reading articles found!