Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (12): 901-908    DOI: 10.11901/1005.3093.2013.393
Current Issue | Archive | Adv Search |
Study on Mechanical Property and Thermal Stability of In-situ Nanocomposites of Polyurethane/ Oxidized Graphene
Guoxing LI1,Jingshan ZHAO1,Ke SUN1,Qiang WANG2,Ming WANG1,**()
1. School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715
2. Faculty of Materials and Energy, South west University, Chongqing, 400715
Cite this article: 

Guoxing LI,Jingshan ZHAO,Ke SUN,Qiang WANG,Ming WANG. Study on Mechanical Property and Thermal Stability of In-situ Nanocomposites of Polyurethane/ Oxidized Graphene. Chinese Journal of Materials Research, 2014, 28(12): 901-908.

Download:  HTML  PDF(2919KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The nanocomposites of polyurethane (PU)/oxidized grapheme (GO) were in-situ prepared by a two step process, i.e. firstly the oxidized graphene (GO) and 4, 4’-diphenylmethane diisocyanate (MDI) were fully reacted, and then polyether polyol and trimethylolpropane were further added to synthesize the nanocomposites. The mechanical property and thermal stability of the nanocomposites were investigated by wide-angle x-ray diffractormetry (WAXD), tensile test machine, TGA and SEM. The GOs evenly dispersed and no aggregation was found in PU matrix for the PU/GO nanocomposites with 0.2 % GO. However, the aggregation of GOs appeared and increased with the increasing GO content. The aggregation of GOs was harmful to the mechanical property and thermal stability of the PU/GO nanocomposites. The nanocomposites of PU/0.2% GO show the best mechanical property and thermal stability. The reduced nanocomposites of PU/GO (named as PU/rGO) were prepared by an in-situ reduction process in a solution of sodium hydrosulfite and sodium hydroxide. It follows that the GOs in the PU matrix could be partly reduced; however such partly reduction of GOs would decline the mechanical property, while enhance the thermal stability of the nanocomposites.

Key words:  organic polymer materials      graphene oxide      in-situ polymerization      polyurethane      mechanical property     
Received:  06 March 2014     
Fund: *Supported by National Natural Science Foundation of China No. 51103119, and Natural Science Foundation Project of Chongqing No. CSTC2014JCYJA50024.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.393     OR     https://www.cjmr.org/EN/Y2014/V28/I12/901

Fig.1  Synthesis of in-situ polymerization of PU/GO composites by two step feeding
Fig.2  FTIR spectra of the GO (a), MDI modified GO (b) and PU/GO in-situ composites with 0.2% GO (c)
Fig.3  The colour change of the PU/GO nanocomposites before or after reducing
Fig.4  X-ray spectra of the PU/GO nanocomposites before (a) or after reduction (b)
Fig.5  SEM images of cryo-fracture surface of the PU/rGO nanocomposites: (a) PU/0.5%rGO, (b) PU/2.0%rGO, (c) and (d) PU/5.0%rGO
Fig.6  The Young's modulus (a), tensile strength (b) and strain at break (c) of the PU/GO nanocomposites with different GO content before or after reduction
Stages PU/0.2%GO PU/0.2%rGO PU/5.0%GO PU/5.0%rGO
Onset /oC 288 305 218 219
Completion /oC 416 500 422 437
Weight residue /% 7.26 4.0 6.1 8.0
The ratio of weight residue to content of GO 36.3 20 1.22 1.6
Table 1  TGA results of PU/GO nanocomposites before or after reduction
Fig.7  The TGA curves of the PU/GO nanocomposites before or after reduction
1 X. Li, X. Wang, L. Zhang, S. Lee, H. Dai,Chemically derived, ultrasmooth graphene nanoribon semiconductor, Science, 319, 1229(2008)
2 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim,Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706(2009)
3 X. Wang, L. Zhi, K. Mullen,Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Letter, 8, 323(2008)
4 G. Eda, G. Fanchini, M. Chhowalla,Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nature Nanotechnology, 3, 270(2008)
5 S. Gilje, S. Han, M. S. Wang, K. L. Wang, R. B. Kaner,A Chemical Route to Graphene for Device Applications, Nano Letter, 7(11), 3394(2007)
6 J. R. Potts, D. R. Dreyer, C.r W. Bielawski, R. S. Ruoff,Graphene-based polymer nanocomposites, Polymer, 52, 5(2011)
7 R. J. Young, I. A. Kinloch, L. Gong, K. S. Novoselov,The mechanics of graphene nanocomposites: A review, Composites Science and Technology, 72(12), 1459(2012)
8 H. Kim, A. A. Abdala, C. W. Macosko,Graphene/Polymer Nanocomposites, Macromolecules, 43, 6515(2010)
9 Y. S. Yun, Y. H. Bae, D. H. Kim, J. Y. Lee, I.-J. Chin, H.-J. Jin,Reinforcing effects of adding alkylated graphene oxide to polypropylene, Carbon, 49(11), 3553(2011)
10 J. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. F. Ma, T. Y. Guo, Y. S. Chen,Molecular-Level Dispersion of Graphene into Poly (vinyl alcohol) and Effective Reinforcement of their Nanocomposites, Advanced Functional Materials, 19, 2297(2009)
11 S. Vadukumpully, J. Paul, N. Mahanta, S. Valiyaveettil,Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability, Carbon, 49, 198(2011)
12 WANG Ming,ZHANG Panpan, BAI Xiaoyu, Mechanical and Thermal Stabilization Properties of the Poly (vinyl chloride)/Graphene Oxide Film, Chinese Journal of Materials Research, 4, 390(2012)
12 (王 明, 张盼盼, 白晓玉, 聚氯乙烯/氧化石墨烯薄膜的力学性能和热稳定性能, 材料研究学报, 4, 390(2012))
13 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff,Graphene-based composite materials, Nature, 442, 282(2006)
14 F. Barroso-Bujans, S. Cerveny, R. Verdejo, J.J. del Val, J.M. Alberdi, A. Alegr?′a, J. Colmenero,Permanent adsorption of organic solvents in graphite oxide and its effect on the thermal exfoliation, Carbon, 48, 1079(2010)
15 T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, J. H. Lee,Recent advances in graphene based polymer composites, Progress in Polymer Science, 35, 1350(2010)
16 A. Dasari, Z. Z. Yu, Y. W. Mai, G. P. Cai, H. H. Song,Roles of graphite oxide, clay and POSS during the combustion of polyamide 6, Polymer, 50, 1577(2009)
17 H. Kim, C. W. Macosko,Processing-property relationships of polycarbonate/graphene composites, Polymer, 50, 3797(2009)
18 M. S. Rama, S. Swaminathan, Influence of Structure of Organic Modifiers and Polyurethane on the Clay Dispersion in Nanocomposites via In Situ Polymerization. Journal of Applied Polymer Science, 118(3), 1774(2010)
19 S. Parnell, K. Min, Reaction kinetics of thermoplastic polyurethane polymerization in situ with poly(vinyl chloride). Polymer, 46(11), 3649(2005)
20 X. C. Chen, L. M. Wu, S. X. Zhou, B. You,In situ polymerization and characterization of polyester-based polyurethane/nano-silica composites. Polymer International, 52(6), 993(2003)
21 B. K. Kim, Y. J. Shin, S. M. Cho, H. M. Jeong,Shape-memory behavior of segmented polyurethanes with an amorphous reversible phase: The effect of block length and content, Journal of Polymer Science Part B: Polymer Physics, 38(20), 2652(2000)
22 S. Stankovich, R. D. Piner, S. T. Nguyen, R. S. Ruoff,Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon, 44, 3342(2006)
23 A. V. Raghu, Y. R. Lee, H. M. Jeong, C. M. Shin,Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites, Macromolecular Chemistry and Physics, 209(24), 2487(2008)
24 X. Wang, Y. Hu, L. Song, H. Yang, W. Xing, H. Lu,In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties, Journal of Materials Chemistry, 21, 4222(2011)
25 H. Kim, Y. Miura, C. W. Macosko,Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity, Chemstry of Materials, 22(11), 3441(2010)
26 D. Cai, K. Yusoh, M. Song,The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite, Nanotechnology, 20, 085712(2009)
27 W. C. J. Zuiderduin, C. Westzaan, J. Huétink, R. J. Gaymans,Toughening of polypropylene with calcium carbonate particles, Polymer, 44(1), 261(2003)
28 Y. Lin, H. Chen, C.-M. Chan, J. Wu,The Toughening mechanism of polypropylene/calcium carbonate nanocomposites, Polymer, 51(14), 3277(2010)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[5] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[6] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[7] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[8] NIE Jingjing, GONG Zhengxuan, SUN Jingli, YANG Sida, XIA Xianchao, XU Aijie. Microstructure and Properties of Butt Welding Joints of 2195-2219 Al-alloy Plates[J]. 材料研究学报, 2023, 37(2): 152-160.
[9] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[10] WANG Guotian, LONG Zekun, WU Biao, WANG Qiang, DING Hongsheng. Effects of Pulse Current on the Microstructure and Properties of Directionally Solidified TiAl Based Alloy in Cold Crucible[J]. 材料研究学报, 2022, 36(9): 706-714.
[11] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[12] LIU Fenghua, ZHAO Wenhao, CAI Changchun, WANG Zhenjun, SHEN Gaofeng, ZHANG Yingfeng, XU Zhifeng, YU Huan. Damage Evolution and Fracture Behavior of Three-directional Orthogonal Fiber Reinforced Aluminum Matrix Composites under Longitudinal Tensile Loading[J]. 材料研究学报, 2022, 36(7): 500-510.
[13] HUANG Huan, ZHANG Xuntao, YANG Shangke, XIAO Liuxin, ZHANG Zhaoxin, YAN Lei, LIN Hailan, BIAN Jun, CHEN Daiqiang. Properties of Nylon PA6-based Nanocomposites Co-modified with Graphene Oxide/sodium Benzoate Complex Nucleating Agent[J]. 材料研究学报, 2022, 36(6): 416-424.
[14] ZHOU Haitao, HOU Xiangwu, WANG Yanbo, XIAO Lv, YUAN Yong, SUN Jingli. High-temperature Deformation Behavior and Properties of High Nb Containing TiAl Alloy[J]. 材料研究学报, 2022, 36(6): 471-480.
[15] GUO Lei, WANG Zekun, GUO Lixia, CHEN Pingping, WANG Lunyan, LI Mingru, WANG Weikai. Performance of CaO Reinforced Composite Cementitious Materials[J]. 材料研究学报, 2022, 36(4): 278-286.
No Suggested Reading articles found!