Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (2): 133-137    
  研究论文 本期目录 | 过刊浏览 |
700℃熔盐电解制备固态钛铁合金化合物
廖先杰1; 翟玉春1; 谢宏伟1; 张懿2
1.东北大学材料与冶金学院 沈阳 110004
2.中国科学院过程工程研究所 北京 100080
Preparation of solid state Fe–Ti alloy compound by FFC in molten salts at 700oC
LIAO Xianjie1;  ZHAI Yuchun1;  XIE Hongwei1;  ZHANG Yi
1.School of Material and Metallurgy; Northeastern University; Shenyang 110014
2.Institute of the Process Engineering Research; Chinese Academy of Sciences; Beijing 100080
引用本文:

廖先杰 翟玉春 谢宏伟 张懿. 700℃熔盐电解制备固态钛铁合金化合物[J]. 材料研究学报, 2009, 23(2): 133-137.
, , , . Preparation of solid state Fe–Ti alloy compound by FFC in molten salts at 700oC[J]. Chin J Mater Res, 2009, 23(2): 133-137.

全文: PDF(1035 KB)  
摘要: 

采用熔盐电解法, 在700℃的NaCl--CaCl2熔盐体系中直接电解固态金属氧化物制备钛铁合金化合物, 以固态Fe粉和TiO2粉混合物为阴极, 石墨棒为阳极, 刚玉坩埚电解槽, 槽电压3.4 V. 结果表明, Fe粉和TiO2粉被电解得到钛铁合金. 本文对Fe和TiO2不同配比阴极进行了研究, 发现不同铁含量的阴极产物不同, 在前7 h内随着铁元素含量的增加电解反应速度提高.

关键词 材料合成与加工工艺电化学电脱氧熔盐钛铁合金TiFe, Fe2Ti    
Abstract

The Ti–Fe alloy compound was prepared by FFC in the molten salts at 700oC . The preformed cathode feed was fabricated with the slurry of mixing TiO2 and Fe power. The graphite rod was used as the anode in the corundum crucible. At cell voltage of 3.4 V, electro–deoxidation was carried out. With different stoichiometric ratios of Fe and TiO2 powder, different currency–time plots were gotten, which showed that the more Fe addition, the quicker the reaction speed is during the first 7 hours deoxidation.

Key wordssynthesizing and processing technics    electrochemical    TiFe    Fe2Ti    molten salts    electro–deoxidation
收稿日期: 2008-09-01     
ZTFLH: 

TB321

 
基金资助:

国家自然科学基金50674026资助项目.

1 A.Kinaci, M.K.Aydinol, Ab initio investigation of Feti–H system, International journal of hydrogen energy, 32(13), 2466(2007) 2 B.K.Singh, H.Ryu, Development of new hydrogen storage material Feti(Ni) for improved hydrogenation characteristics, IEEJ transactions on electrical and electronic engineering, 1(1), 24(2006) 3 L.I.B.X.Zhan G M, Pan F, Magnetic properties and microst ructure of Fe/ Ti nano2scale multilayers, 182(1–2), 89(1998) 4 Yan X L, Chen X Q, Grytsiva A, Witusiewicz V T, Rogl P, Podloucky R, Pomjakushin V, Giester G., Site  reference, thermodynamic, and magnetic properties of the ternary laves phase Ti(Fe1–Xalx)(2) with the crystal structure of the Mgzn2–Type. International journal of materials research, 97(4), 450(2006) 5 J.Koeble, M.Huth, Field induced unidirectional magnetic anisotropy in Fe2Ti thin films, European magnetic materials and applications, 373(3), 137(2001) 6 FAN Xu, ZHEN Xiamao, Massive metastable Fe2Ti alloy preparation and magnetic property, 6(5), 606(2007) (范旭, 真下茂, 亚稳态Fe2Ti块状合金的制备和磁性,  6(5), 606(2007)) 7 ZHANG Yingmin, ZHOU Lian, SUN Jun, HAN Mingchen, SHU Ying, YANG Jianming, Cooling bed titanium alloy smelting technology, Titanium Industry, 24(4), 27(2007) (张英明, 周廉, 孙军, 韩明臣, 舒滢, 杨建朝, 钛合金冷床熔炼技术进展, 钛工业进展,  24(4), 27(2007)) 8 G.Z.Chen, D.J.Fray, T.W.Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(6802), 361(2000) 9 C.Schwandt, D.J.Fray, Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride, Electrochimica Acta, 51(1), 66(2005) 10 Du J.H., Xi Z.P., Li Q.Y., Li, Z X; Tang, Y., Process of reduction of TiO2 using electrodeoxidation, Rare metal materials and engineering, 35(7), 1045(2006) 11 X.W.Wang, D.P.Ray, T.T.Alton, Electrical conductivity of cryolitic melts (Warrendale, Minerals, Metals &  aterials Soc, 1991) p.481 12 X.W.Wang, D.P.Ray, T.T.Alton, A multiple regression equation for the electrical conductivity of cryolitic melts, (Warrendale, Minerals, Metals & Materials Soc, 1992) p.247 13 HU Xianwei, WANG Zhaowen, LU Guimin, SHI Zhongning, CHAO Xiaozhou, CUI Jianzhong, ZHAO Xingliang, Equivalent circuit analysis and application for electrical conductivity measurement by continuously varying cell constant technique, The Chinese Journal of Nonferrous Metals, 18(3), 551(2008) (胡宪伟, 王兆文, 路贵民, 石忠宁, 曹晓舟, 崔建忠, 赵兴亮, 连续变化电导池常数法测定电导率的等效电路分析及应用, 中国有色金属学报(2008)) 14 WANG Changzhen, Metallurgical physical chemistry research methods, (Beijing, Metallurgical Industry Press, 2002) p.344 (王常珍,  冶金物理化学研究方法  (北京, 冶金工业出版社, 2002) p.344) 15 T.B.massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, OH, (1990) 16 LIANG Yingjiao, CHE Yingchang, Inorganic thermodynamics manual data, (China Liaoning Shenyang, Northeastern University Press, 1993) p.634 (梁英教, 车荫昌,  无机物热力学数据手册 (沈阳, 东北大学出版社, 1993) p.634)
[1] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[2] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[3] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[4] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[5] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[6] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[7] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[8] 孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
[9] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[10] 姜海超, 安昊东, 杨静, 苏玉金, 李泽, 张滨. 原位生长在聚喹唑啉基共轭微孔聚合物表面的MoS2 及其析氢性能[J]. 材料研究学报, 2022, 36(12): 900-906.
[11] 王根, 李新梅, 卢彩彬, 王松臣, 柴程. CoCuFeNiTi高熵合金涂层的制备和性能研究[J]. 材料研究学报, 2021, 35(8): 561-571.
[12] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[13] 白龙腾, 成来飞, 杨晓辉. FLiNaK熔盐浸渗对2D C/C复合材料力学性能的影响[J]. 材料研究学报, 2021, 35(10): 778-784.
[14] 张少华, 李彦睿, 卫英慧, 刘宝胜, 侯利锋, 杜华云, 刘笑达. 多介质在碳钢腐蚀过程中的协同作用[J]. 材料研究学报, 2021, 35(10): 721-731.
[15] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.