Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (3): 207-216    DOI: 10.11901/1005.3093.2024.182
  研究论文 本期目录 | 过刊浏览 |
基于团簇式的316不锈钢成分优化及其实验验证
冉子祚1, 张爽1(), 苏兆翼1, 王阳1, 邹存磊1, 赵亚军1, 王增睿2, 姜薇薇1, 董晨希1, 董闯1
1.大连交通大学材料科学与工程学院 大连 116028
2.沈阳铸造研究所有限公司 沈阳 110021
Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification
RAN Zizuo1, ZHANG Shuang1(), SU Zhaoyi1, WANG Yang1, ZOU Cunlei1, ZHAO Yajun1, WANG Zengrui2, JIANG Weiwei1, DONG Chenxi1, DONG Chuang1
1.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
2.Shenyang Research Institute of Foundry Co. Ltd., Shenyang 110021, China
引用本文:

冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.
Zizuo RAN, Shuang ZHANG, Zhaoyi SU, Yang WANG, Cunlei ZOU, Yajun ZHAO, Zengrui WANG, Weiwei JIANG, Chenxi DONG, Chuang DONG. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. Chinese Journal of Materials Research, 2025, 39(3): 207-216.

全文: PDF(2654 KB)   HTML
摘要: 

316不锈钢因其优异的耐蚀和加工性能而得到广泛应用,但其宽泛的成分范围会导致性能波动。本文首先将置换型固溶合金化元素归类为稳定铁素体的类Cr元素(Cr, Si, Mo)和稳定奥氏体的类Ni元素(Ni, Mn)。进而引入“团簇加连接原子”模型,给出该不锈钢的16原子成分单元,由此将现有国标成分区间解析成五个16原子成分式,分别对应于两类元素的上下限(Cr, Si, Mo)3.0625, 3.5-(Ni, Mn)1.75, 2.25-Febal和中值(Cr, Si, Mo)3.25-(Ni, Mn)2-Febal。采用氩气保护电弧炉熔炼,用真空箱式炉实施均匀化处理(1150 ℃/2 h,炉冷),冷轧至5 mm薄片(变形量约50%),再实施固溶处理(1050 ℃/0.5 h,水淬)。类Ni元素含量最低的Ni1.75合金组织中出现铁素体相,对应的质量百分比成分区间为(21.2~18.5) (Cr, Si, Mo)-11.4(Ni, Mn)-Fe;其它三个样品均为单一奥氏体相。经固溶后,平均维氏硬度约为160,最高为174,均满足国标要求(低于200)。在质量分数为3.5% NaCl溶液中的电化学腐蚀实验结果表明,类Cr元素含量最高的Cr3.5-Ni2.25-Febal合金(Fe-17.8Cr-0.6Si-2.7Mo-14.0Ni-0.8Mn-0.021C)体现出最强的耐蚀性能,成分式中类Ni元素原子个数在2以上的合金也表现出较强的耐蚀性,对应的质量百分比成分区间为(18.4~21.1) (Cr, Si, Mo)-(14.7~13.0) (Ni, Mn)-Fe。类Cr元素含量高的合金点蚀电位(0.211 V)也高。综上,Cr3.25-Ni2-Febal(Fe-16.7Cr-0.4Si-2.7Mo-11.9Ni-1.2Mn-0.021C)既能形成单相奥氏体,又具有满足标准要求的维氏硬度(~160HV),并且其耐蚀性也在高的水平(自腐蚀电位-0.082 V、腐蚀电流密度1.83 × 10-6 A·cm-2、耐点蚀当量25.6、点蚀电位0.19 V),合金化元素含量适中,是最佳合金。

关键词 金属材料成分优化团簇加连接原子模型316不锈钢显微组织点蚀    
Abstract

316 stainless steel is widely utilized due to its exceptional corrosion resistance and processibility. However, the broad composition range specified by the industrial standards can lead to obvious property variations. In this study, we first classify the solute elements of substitutional type into Cr-like ferrite stabilizer (Cr, Si, Mo) and Ni-like austenite stabilizer (Ni, Mn). Then we employ the “cluster-plus-glue-atom” model to obtain its composition unit, which contains 16 atoms. Accordingly, the GB standard is interpreted as being enclosed by five 16-atom formulas, corresponding respectively to the lower and upper limits of Cr- and Ni-like elements (Cr, Si, Mo)3.0625, 3.5-(Ni, Mn)1.75, 2.25-Febal and the mid-value (Cr, Si, Mo)3.25-(Ni, Mn)2-Febal. According to the above classification, five kinds of test steels were designed and melted by Ar-atmosphere arc furnace. Then in vacuum heat furnaces, they were homogenized (1150 oC/2 h/furnace cooling), cold-rolled (50% deformation) to 5mm sheets, and finally solutioned (1050 oC/0.5 h/water quenching). The steels containing the lowest Ni-like content of 1.75 in the 16-atom formulas (10.9%, atom fraction), form ferrite in austenite matrix, corresponding to the composition range of (21.2~18.5) (Cr, Si, Mo)-11.4(Ni, Mn)-Fe (%, mass fraction). The other three test steels consist of only single austenite phase. The average hardness value after rolling and solutioning is 160HV approximately, satisfying the GB requirement (< 200HV). The electrochemical tests in 3.5% NaCl solution demonstrates that the steel Cr3.5-Ni2.25-Febal (Fe-17.8Cr-0.6Si-2.7Mo-14.0Ni-0.8Mn-0.021C), with the highest Cr-like element content, possesses the best corrosion resistance, next to it are alloys Cr3.0625-Ni2.25-Febal and Cr3.25-Ni2-Febal, containing Ni-like element above 2 in the formulas, covering a composition range of (18.4~21.1) (Cr, Si, Mo)-(14.7~13.0) (Ni, Mn)-Fe (%). The steels containing the highest Cr-like contents of 3.5 show the best pitting corrosion potential 0.211 V. It follows that the steel with proper amounts of alloying elements Cr3.25-Ni2-Febal (Fe-16.7Cr-0.4Si-2.7Mo-11.9Ni-1.2Mn-0.021C), falling in the middle of the formula zone, can not only form single-phase austenite, but also meet the standard requirements of Vickers hardness (~160HV), while its corrosion resistance is also high (free-corrosion potential -0.082 V, corrosion current density 1.83 × 10-6 A·cm-2, PREN 25.6, and pitting corrosion potential 0.19 V).

Key wordsmetallic materials    composition optimization    cluster-plus-glue-atom model    316 stainless steel    microstructure    pitting corrosion
收稿日期: 2024-04-25     
ZTFLH:  TG142.71  
基金资助:国家自然科学基金(52101127);国家自然科学基金(52171134);辽宁省教育厅基本科研项目(LJKMZ20220858);辽宁省教育厅基本科研项目(LJKMZ20220837);辽宁省教育厅基本科研项目(LJKMZ20220866);辽宁省“兴辽英才计划”项目(XLYC2203121);大连市优秀青年科技人才项目(2023RY040)
通讯作者: 张 爽,副教授,zhangshuang@djtu.edu.cn,研究方向为金属材料设计与结构模型构建
Corresponding author: ZHANG Shuang, Tel: (0411)84106876, E-mail: zhangshuang@djtu.edu.cn
作者简介: 冉子祚,男,1999年生,硕士生
图1  316不锈钢的(Cr, Si, Mo)-(Ni, Mn)-Fe伪三元成分图,单位为原子个数(总和为16)。红色虚线围成的区域代表316不锈钢国标成分区间,蓝色实线ABFE围成的区域为316不锈钢根据团簇式优化后的国标成分区间,红色三角形符号代表基于团簇式设计的五个合金成分点
Alloy codesCluster formulasCompositions / %, mass fraction
BT(Cr, Si, Mo)3.5-(Ni, Mn)1.75-FebalFe-17.9Cr-0.6Si-2.7Mo-10.3Ni-1.2Mn-0.021C = Fe-21.2(Cr, Si, Mo)-11.4(Ni, Mn)-0.021C
BB(Cr, Si, Mo)3.0625-(Ni, Mn)1.75-FebalFe-16.0Cr-0.4Si-2.0Mo-10.3Ni-1.2Mn-0.021C = Fe-18.5(Cr, Si, Mo)-11.4(Ni, Mn)-0.021C
MM(Cr, Si, Mo)3.25-(Ni, Mn)2-FebalFe-16.7Cr-0.4Si-2.7Mo-11.9Ni-1.2Mn-0.021C = Fe-19.8(Cr, Si, Mo)-13.0(Ni, Mn)-0.021C
TB(Cr, Si, Mo)3.0625-(Ni, Mn)2.25-FebalFe-16.0Cr-0.4Si-2.0Mo-14.0Ni-0.8Mn-0.021C = Fe-18.4(Cr, Si, Mo)-14.7(Ni, Mn)-0.021C
TT(Cr, Si, Mo)3.5-(Ni, Mn)2.25-FebalFe-17.8Cr-0.6Si-2.7Mo-14.0Ni-0.8Mn-0.021C = Fe-21.1(Cr, Si, Mo)-14.7(Ni, Mn)-0.021C
表1  根据16原子团簇式设计的316不锈钢成分。合金编号中第一个字母表示类Ni元素的含量,第二个字母表示类Cr元素的含量,其中,B(bottom)表示下限,T(top)表示上限,M(medium)表示中值
图2  设计合金在铸态和最终态下的XRD图谱
图3  铸态合金的金相结果
图4  BT合金Cr3.5-Ni1.75-Febal和BB合金Cr3.0625-Ni1.75-Febal在铸态下的SEM图像
图5  最终态合金的金相结果
图6  铸态和最终态合金的维氏硬度
图7  最终态合金在扫描速率为1 mV/s时的极化曲线,其中横坐标取对数值
图8  最终态合金极化曲线的Tafel拟合结果
Alloy codesCluster formulasEcorr / VIcorr / A·cm-2Epit / VPREN
BT(Cr, Si, Mo)3.5-(Ni, Mn)1.75-Febal-0.1783.29 × 10-60.21126.755
BB(Cr, Si, Mo)3.0625-(Ni, Mn)1.75-Febal-0.1973.57 × 10-60.18122.699
MM(Cr, Si, Mo)3.25-(Ni, Mn)2-Febal-0.0821.83 × 10-60.19225.569
TB(Cr, Si, Mo)3.0625-(Ni, Mn)2.25-Febal-0.0512.70 × 10-60.17922.657
TT(Cr, Si, Mo)3.5-(Ni, Mn)2.25-Febal-0.0491.50 × 10-60.19926.705
表2  最终态合金在质量分数为3.5% NaCl溶液中的电化学参数
图9  最终态合金的耐点蚀当量和点蚀电位
图10  最终态合金在电化学腐蚀后的OM像
Cluster formulasA(densities) / m-2B(sizes) / mm2GB-A / m-2GB-B / mm2Grades
(Cr, Si, Mo)3.5-(Ni, Mn)1.75-Febal6.4 × 1050.101 = 2.5 × 1031 = 0.5A-4、B-1
(Cr, Si, Mo)3.0625-(Ni, Mn)1.75-Febal8.1 × 1050.072 = 1 × 1042 = 2.0A-4、B-1
(Cr, Si, Mo)3.25-(Ni, Mn)2-Febal6.5 × 1050.063 = 5 × 1043 = 8.0A-4、B-1
(Cr, Si, Mo)3.0625-(Ni, Mn)2.25-Febal7.3 × 1050.154 = 1 × 1054 = 12.5A-4、B-1
(Cr, Si, Mo)3.5-(Ni, Mn)2.25-Febal6.0 × 1050.035 = 5 × 1065 = 24.5A-4、B-1
表3  最终态合金的点蚀坑密度、尺寸和国标评级标准
1 Stainless Steel Branch of China Special Steel Enterprises Association. Practical Handbook of Stainless Steels [M]. Beijing: China Science and Technology Publishing House, 2003
1 中国特钢企业协会不锈钢分会. 不锈钢实用手册 [M]. 北京: 中国科学技术出版社, 2003
2 Li J M, Liang J X, Liu Y P. Stainless Steels in China [M]. Beijing: Metallurgical Industry Press, 2021
2 李建民, 梁剑雄, 刘艳平. 中国不锈钢 [M]. 北京: 冶金工业出版社, 2021
3 Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses [J]. J. Phys. D: Appl. Phys., 2007, 40(15): R273-R291
4 Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses [J]. Int. Mater. Rev., 2020, 65(5): 286
5 Zhang S, Wang Q, Dong C. Composition genes in materials [J]. J. Mater. Inf., 2021, 1: 8
6 Zhang S, Dong C, Hӓussler P. Spherical-periodic order and relevant short-range structural units in simple crystal structures [J]. J. Vac. Sci. Technol. A, 2022, 40(2): 022201
7 Wang X D, Zhang S, Zou C L, et al. New composition standard of 304 stainless steel based on cluster formula [J]. Trans. Mater. Heat Treat., 2022, 43(9): 103
7 王晓东, 张 爽, 邹存磊 等. 基于团簇式的304不锈钢成分新标准 [J]. 材料热处理学报, 2022, 43(9): 103
doi: 10.13289/j.issn.1009-6264.2022-0095
8 . Cold rolled stainless steel plate, sheet and strip [S]. Beijing: Standards Press of China, 2015
8 . 不锈钢冷轧钢板和钢带 [S]. 北京: 中国标准出版社, 2015
9 Jiang H Z, Peng S, Hu Q Y, et al. Corrosion and Cavitation Erosion Resistance of 316L Stainless Steels Produced by Laser Metal Deposition [J]. Acta Metall. Sin., 2023, 60(11): 1512
9 蒋华臻, 彭 爽, 胡琦芸 等. 激光熔化沉积制备316L不锈钢的电化学腐蚀及空化腐蚀性能 [J]. 金属学报, 2023, 60(11): 1512
10 G102-89. Standard practice for calculation of corrosion rates and related information from electrochemical measurements [S]. ASTM International, 2015
11 Wu D, Yu C, Wang Q, et al. Synchronous-hammer-forging-assisted laser directed energy deposition additive manufacturing of high-performance 316L samples [J]. J. Mater. Process. Tech., 2022, 307: 117695
12 Wang S, Xue H, Yang F Q, et al. Determination of the mechanical paramete rs of 316L austenitic stainless steel after cold working by using hardness test [J]. J. Xi'an Univ. Sci. Technol., 2021, 41(2): 340
12 王 帅, 薛 河, 杨富强 等. 利用硬度试验获取冷加工后316L不锈钢力学性能 [J]. 西安科技大学学报, 2021, 41(2): 340
13 Liang C H. Influence of nickel on crevice corrosion behavior of type 304 stainless steel in NaCl solution [J]. Corros. Sci. Protect. Technol., 1999, 11(3): 147
13 梁成浩. 镍对304不锈钢在NaCl溶液中缝隙腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 1999, 11(3): 147
14 Sun Y T, Tan X, Lei L L, et al. Revisiting the effect of molybdenum on pitting resistance of stainless steels [J]. Tungsten, 2021, 3(3): 329
15 Lee J. B. Effects of alloying elements, Cr, Mo and N on repassivation characteristics of stainless steels using the abrading electrode technique [J]. Mater. Chem. Phys., 2006, 99(2): 224
16 Lu Y C, Ives M B, Clayton C. R. Synergism of alloying elements and pitting corrosion resistance of stainless steels [J]. Corros. Sci., 1993, 35(1-4): 89
17 Lu Y C, Bandy R, Clayton C R, et al. Surface enrichment of nitrogen during passivation of a highly resistant stainless steel [J]. J. Electrochem. Soc., 1983, 130(8): 1774
18 Bandy R, Rooyen D V. Properties of nitrogen-containing stainless alloy designed for high resistance to pitting [J]. Corrosion, 1985, 41(4): 228
19 . Corrosion of metals and alloys—Evaluation of pitting corrosion [S]. Beijing: Standards Press of China, 2001
19 . 金属和合金的腐蚀点蚀评定方法 [S]. 北京: 中国标准出版社, 2001
20 Wang C, Zhu P, Wang F, et al. Anisotropy of microstructure and corrosion resistance of 316L stainless steel fabricated by wire and arc additive manufacturing [J]. Corros. Sci., 2022, 206: 110549
[1] 胥聪敏 孙姝雯 朱文胜 陈志强 李城臣. 不同油水比环境下三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, (4): 0-0.
[2] 张慧芳, 吴浩, 肖传民, 李奇, 谢君, 李金国, 王振江, 于金江. 热处理对一种 γʹ 沉淀强化钴基高温合金拉伸性能的影响[J]. 材料研究学报, 2025, 39(3): 198-206.
[3] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[4] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.
[5] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.
[6] 于兴福, 西克宇, 张宏伟, 王全振, 郝天赐, 郑冬月, 苏勇. 离子渗氮后的扩散处理对7Cr7Mo2V2Si冷作模具钢性能的影响[J]. 材料研究学报, 2025, 39(3): 225-232.
[7] 胥聪敏, 李雪丽, 付安庆, 孙姝雯, 陈志强, 李城臣. 复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响[J]. 材料研究学报, 2025, 39(2): 145-152.
[8] 吴晓祺, 万红江, 明洪亮, 王俭秋, 柯伟, 韩恩厚. 原位小冲头压缩速率对X65管线钢氢脆敏感性的影响[J]. 材料研究学报, 2025, 39(2): 92-102.
[9] 马修戈, 吴庆辉, 庞建超, 刘增乾, 李守新, 骆凯伦, 张哲峰. 晶界取向差对双晶高温合金常温和高温拉伸性能的影响[J]. 材料研究学报, 2025, 39(2): 81-91.
[10] 袁鸿渊, 张思倩, 王栋, 张英建, 马力, 于明涵, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响[J]. 材料研究学报, 2025, 39(2): 113-125.
[11] 牟春浩, 陈文革, 余田亮, 马江江. 红装TA2/Q345复合管扩散焊接头的性能[J]. 材料研究学报, 2025, 39(1): 35-43.
[12] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[13] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[14] 王娜, 李文彬, 庞建超, 陈立佳, 高崇, 邹成路, 张辉, 李守新, 张哲峰. 增材制造高温合金在不同温度下的拉伸性能与变形机制[J]. 材料研究学报, 2025, 39(1): 1-10.
[15] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.