Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (4): 241-247    DOI: 10.11901/1005.3093.2023.255
  研究论文 本期目录 | 过刊浏览 |
退火温度对Fe35Ni30Cr20Al10Nb5 高熵合金的组织结构和性能的影响
李云飞1,2,3, 王金贺1,3, 张龙1,3, 李正坤1, 付华萌1,3(), 朱正旺1,3, 李宏1, 王爱民1,3, 张海峰1,3
1.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5
LI Yunfei1,2,3, WANG Jinhe1,3, ZHANG Long1,3, LI Zhengkun1, FU Huameng1,3(), ZHU Zhengwang1,3, LI Hong1, WANG Aimin1,3, ZHANG Haifeng1,3
1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

李云飞, 王金贺, 张龙, 李正坤, 付华萌, 朱正旺, 李宏, 王爱民, 张海峰. 退火温度对Fe35Ni30Cr20Al10Nb5 高熵合金的组织结构和性能的影响[J]. 材料研究学报, 2024, 38(4): 241-247.
Yunfei LI, Jinhe WANG, Long ZHANG, Zhengkun LI, Huameng FU, Zhengwang ZHU, Hong LI, Aimin WANG, Haifeng ZHANG. Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5[J]. Chinese Journal of Materials Research, 2024, 38(4): 241-247.

全文: PDF(14630 KB)   HTML
摘要: 

系统地研究了退火处理温度对低熔点高熵合金Fe35Ni30Cr20Al10Nb5(摩尔比)的组织结构和性能的影响。结果表明:随着退火温度的提高,铸态Fe35Ni30Cr20Al10Nb5合金中富Fe-Cr元素的fcc相的体积分数逐渐减少,Laves相和B2-NiAl相的体积分数逐渐增大。准静态压缩实验结果表明,铸态样品的压缩塑性变形能力良好。随着退火处理温度的提高合金的屈服强度先提高后降低,在700℃退火的样品其屈服强度最高(为1247.7 MPa),但是塑性变形量比铸态有所降低。压缩屈服强度随退火处理温度降低,可归因于基体fcc相在高温下的分解。电化学测试结果表明,这种合金的耐腐蚀能力随退火处理温度的提高而单调提高,在900℃退火的样品其腐蚀电位为-72.02 mV。

关键词 金属材料高熵合金退火处理力学性能耐腐蚀性能    
Abstract

The effect of annealing-temperature on the microstructure and properties of the low-melting point high-entropy alloy Fe35Ni30Cr20Al10Nb5 (molar ratio) were systematically investigated. The results show that with the increasing annealing-temperature, the volume fraction of Fe-Cr-rich fcc phase gradually decreases, while the volume fraction of Laves phase and B2-NiAl phase gradually increases for the as-cast alloy. The quasi-static compression test results show that the as-cast alloy has good compressive plastic deformation ability, and the yield strength of the alloy increases and then decreases as the annealing-temperature increases. The decrease in compression yield strength with the rising annealing-temperature is mainly attributed to the decomposition of the fcc phase at higher temperatures. The electrochemical test results show that the corrosion resistance of the alloy increases monotonically with the annealing-temperature, and the free-corrosion potential of the alloy annealed at 900oC is -72.02 mV.

Key wordsmetallic materials    high entropy alloy    annealing treatment    mechanical properties    corrosion resistance
收稿日期: 2023-05-08     
ZTFLH:  TG13  
基金资助:国家重点研发计划(2021YFA0716303);中核集团领创科研项目;中国科学院0到1项目
通讯作者: 付华萌,研究员,hmfu@imr.ac.cn,研究方向为非晶合金制备技术
Corresponding author: FU Huameng, Tel: 13654219196, E-mail: hmfu@imr.ac.cn
作者简介: 李云飞,男,1998年生,硕士生
图1  不同状态Fe35Ni30Cr20Al10Nb5高熵合金的XRD谱
图2  不同状态Fe35Ni30Cr20Al10Nb5高熵合金的微观形貌
图3  不同状态Fe35Ni30Cr20Al10Nb5高熵合金的EDS面分布
AlloysChemical composition / %, atomic fraction
FeNiCrAlNb
As-cast34.4339.2220.5010.974.89
700oC34.8729.3520.6610.344.78
800oC34.3529.1120.3911.085.08
900oC35.2928.9820.6210.744.37
表1  不同状态Fe35Ni30Cr20Al10Nb5高熵合金的EDS结果
图4  不同状态Fe35Ni30Cr20Al10Nb5高熵合金的准静态压缩性能
图5  不同状态的Fe35Ni30Cr20Al10Nb5高熵合金的动电位极化曲线
Temperature / oCEcorr vs. SCE / mVIcorr/ μA·cm-2
As-cast-184.104.86 × 10-2
700-191.102.55 × 10-1
800-80.672.06 × 10-1
900-72.027.40 × 10-2
表2  不同状态Fe35Ni30Cr20Al10Nb5高熵合金在3.5%NaCl(质量分数)溶液中的腐蚀参数
ElementFeNiCrAlNb
Fe (0.127 nm)--2-1-11-16
Ni (0.125 nm)-2--7-22-30
Cr (0.127 nm)-1-7--10-7
Al (0.143 nm)-11-22-10--18
Nb (0.146 nm)-16-30-7-18-
表3  Fe、Ni、Cr、Al、Nb二元合金的混合焓[19]
图6  不同状态Fe35Ni30Cr20Al10Nb5高熵合金的准静态压缩断口形貌
图7  不同状态Fe35Ni30Cr20Al10Nb5高熵合金的电化学腐蚀形貌
1 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
2 Ye J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
3 Cao L G, Zhu L, Zhang L L, et al. Microstructure evolution and mechanical properties of rapid solidified AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Chin. J. Mater. Res., 2019, 33(9): 650
3 曹雷刚, 朱 琳, 张磊磊 等. 快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能 [J]. 材料研究学报, 2019, 33(9): 650
doi: 10.11901/1005.3093.2019.069
4 Zhao R F, Ren B, Zhang G P, et al. Effect of Co content on the phase transition and magnetic properties of Co x CrCuFeMnNi high-entropy alloy powders [J]. J. Magn. Magn. Mater., 2018, 468: 14
5 Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCr-FeMnNi high-entropy alloy after severe plastic deformation [J] Acta Mater., 2015, 96: 258
6 Ji Y, Zhang L, Lu X, et al. Microstructural optimization of Fe x CrNiAl0.5Ti0.5 high entropy alloys toward high ductility [J]. Appl. Phys. Lett., 2021, 119: 141903
7 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
8 Hamdy A S, El-Shenawy E, El-Bitar T. The corrosion behavior of niobium bearing cold deformed austenitic stainless steels in 3.5% NaCl solution [J]. Mater. Lett., 2007, 61: 2827
9 Wang H, Liu P, Chen X H, et al. Mechanical properties and corrosion resistance characterization of a novel Co36Fe36Cr18Ni10 high-entropy alloy for bioimplants compared to 316L alloy [J]. J. Alloys Compd., 2022, 906: 163947
10 Gao X Z, Lu Y P, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Mater., 2017, 141: 59
11 Shi H, Fetzer R, Jianu A, et al. Influence of alloying elements (Cu, Ti, Nb) on the microstructure and corrosion behaviour of AlCrFeNi-based high entropy alloys exposed to oxygen-containing molten Pb [J]. Corros. Sci., 2021, 190: 109659
12 Brady M P, Magee J, Yamamoto Y, et al. Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance [J]. Mater. Sci. Eng., 2014, 590A: 101
13 Luo R, Chen L L, Zhang Y X, et al. Characteristic and mechanism of dynamic recrystallization in a newly developed Fe-Cr-Ni-Al-Nb superalloy during hot deformation [J]. J. Alloys Compd., 2021, 865: 158601
14 Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel [J]. Corros. Sci., 2005, 47(9): 2257
15 Chen Y Y, Hong U T, Shih H C, et al. Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel [J]. Corros. Sci., 2005, 47(11): 2679
16 Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
17 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10(6): 534
18 Wen C, Mo W W, Tian Y W, et al. Research progress on solid solution strengthening of high entropy alloys [J]. Mater. Rep., 2021, 35: 17081
18 文 成, 莫湾湾, 田玉琬 等. 高熵合金固溶强化问题的研究进展 [J]. 材料导报, 2021, 35: 17081
19 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46(12): 2817
20 Jiang B B, Yu Y, Cui J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance [J]. Science, 2021, 371(6531): 830
doi: 10.1126/science.abe1292 pmid: 33602853
[1] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[2] 王仲楠, 郭慧, 母悦山. 基于多巴胺改性纳米复合水凝胶的制备和性能[J]. 材料研究学报, 2024, 38(4): 269-278.
[3] 王玉钊, 蒋中华, 贾春妮, 张玉妥, 王培. 等温淬火对纳米贝氏体钢的组织和力学性能的影响[J]. 材料研究学报, 2024, 38(4): 279-287.
[4] 田淞文, 刘丽荣, 田素贵. 一种含Re/Ru镍基单晶合金的蠕变行为及其机理[J]. 材料研究学报, 2024, 38(4): 248-256.
[5] 吴厚燃, 段体岗, 马力, 邵刚勤, 张恒宇, 张海兵. 铝空气电池Al-Zn-In-Mg-Ga-Mn合金阳极的电化学性能[J]. 材料研究学报, 2024, 38(4): 257-268.
[6] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[7] 齐恺力, 胡德江, 高崇, 刘峰, 庞建超, 邵琛玮, 杨梦起, 李守新, 张哲峰. 不同温度回火低合金钢缺口拉伸性能的预测[J]. 材料研究学报, 2024, 38(3): 197-207.
[8] 闫俊竹, 高明, 于晓明, 谭丽丽. CaAg的含量对可降解Zn-Li-Ca-Ag合金的组织和性能的影响[J]. 材料研究学报, 2024, 38(3): 177-186.
[9] 刘晨野, 罗天骄, 李应举, 冯小辉, 黄秋燕, 郑策, 朱成, 杨院生. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能[J]. 材料研究学报, 2024, 38(3): 187-196.
[10] 尹艳超, 吕逸帆, 刘千里, 许亚利, 蒋鹏, 余巍. 在室温和液氮温度Ti-Al-Fe合金的拉伸行为及其变形机理[J]. 材料研究学报, 2024, 38(3): 232-240.
[11] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[12] 郑明瑞, 李亚微, 刘静, 王莉, 郑伟, 董加胜, 张健, 楼琅洪. 缺口取向及温度对第三代单晶高温合金DD33热疲劳行为的影响[J]. 材料研究学报, 2024, 38(2): 111-120.
[13] 郝文俊, 敬和民, 席通, 杨春光, 杨柯. 奥氏体化温度对含铜高碳马氏体不锈钢的组织和性能的影响[J]. 材料研究学报, 2024, 38(2): 121-129.
[14] 曾道平, 安同邦, 郑韶先, 代海洋, 曹志龙, 马成勇. 440 MPa级高强钢焊缝金属的断裂韧性[J]. 材料研究学报, 2024, 38(2): 151-160.
[15] 刘震寰, 李勇翰, 刘洋, 王培, 李殿中. GCr15轴承钢时效过程碳化物的演化行为[J]. 材料研究学报, 2024, 38(2): 130-140.