|
|
Ti65合金的初级蠕变和稳态蠕变 |
岳颗1,2,刘建荣1( ),杨锐1,王清江1 |
1. 中国科学院金属研究所 沈阳 110016 2. 中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Primary Creep and Steady-State Creep of Ti65 Alloy |
YUE Ke1,2,LIU Jianrong1( ),YANG Rui1,WANG Qingjiang1 |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
YUE Ke,
LIU Jianrong,
YANG Rui,
WANG Qingjiang.
Primary Creep and Steady-State Creep of Ti65 Alloy[J]. Chinese Journal of Materials Research, 2020, 34(2): 151-160.
[1] | ES-Souni M. Creep behaviour and creep microstructures of a high-temperature titanium alloy Ti-5.8 Al-4.0 Sn-3.5 Zr-0.7 Nb-0.35 Si-0.06 C (Timetal 834): part I. Primary and steady-state creep [J]. Mater. Charact., 2001, 46(5): 365 | [2] | Hayes R. Creep behavior of Ti-6Al-2Sn-4Zr-2Mo: I. The effect of nickel on creep deformation and microstructure [J]. Acta Mater., 2002, 50(20): 4953 | [3] | Viswanathan G, Karthikeyan S, Hayes R, et al. Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo: II. Mechanisms of deformation [J]. Acta Mater., 2002, 50(20): 4965 | [4] | Rosenberger A H, Madsen A, Ghonem H. Aging effects on the creep behavior of the near-alpha titanium alloy Ti-1100 [J]. J Mater. Eng. Perform., 1995, 4(2): 182 | [5] | Chandravanshi V, Sarkar R, Kamat S V, et al. Effects of thermomechanical processing and heat treatment on the tensile and creep properties of boron-modified near alpha titanium Alloy Ti-1100 [J]. Metall. Mater. Trans. A, 2012, 44(1): 201 | [6] | Zhao L, Liu J R, Wang Q J, et al. Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy [J]. Chin. J. Mater. Res., 2009, 23(1): 1 | [6] | 赵亮, 刘建荣, 王清江等. 析出相对Ti60钛合金蠕变和持久性能的影响 [J]. 材料研究学报, 2009, 23(1): 1 | [7] | Li W Y, Chen Z Y, Liu J R, et al. Effect of texture on anisotropy at 600℃ in a near-α titanium alloy Ti60 plate [J]. Mater. Sci. Eng. A, 2017, 688: 322 | [8] | ES-Souni M. Creep deformation behavior of three high-temperature near α-Ti alloys: IMI 834, IMI 829, and IMI 685 [J]. Metall. Mater. Trans. A, 2001, 32(2): 285 | [9] | Balasundar I, Raghu T, Kashyap B P. Correlation between microstructural features and creep strain in a near-α titanium alloy processed in the α+β regime [J]. Mater. Sci. Eng. A, 2014, 609: 241 | [10] | Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications [J]. Nat Mater, 2016, 15(8): 876 | [11] | Klein T, Usategui L, Rashkova B, et al. Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures [J]. Acta Mater., 2017, 128: 440 | [12] | Sherby O D, Burke P M. Mechanical behavior of crystalline solids at elevated temperature [J]. Prog. Mater. Sci., 1968, 13: 323 | [13] | Kassner M E. Fundamentals of creep in metals and alloys [M]. Butterworth-Heinemann, 2015. | [14] | Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2007 | [14] | 张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007 | [15] | Blum W, Eisenlohr P. Dislocation mechanics of creep [J]. Mater. Sci. Eng. A, 2009, 510-511: 7 | [16] | Chokshi A H. An evaluation of the grain-boundary sliding contribution to creep deformation in polycrystalline alumina [J]. J. Mater. Sci., 1990, 25(7): 3221 | [17] | Langdon T G. Grain boundary sliding as a deformation mechanism during creep [J]. Philos. Mag., 2006, 22(178): 689 | [18] | Langdon T G. Creep at low stresses: An evaluation of diffusion creep and Harper-Dorn creep as viable creep mechanisms [J]. Metall. Mater. Trans. A, 2002, 33(2): 249 | [19] | Kassner M E, Kumar P, Blum W. Harper-Dorn creep [J]. Int. J. Plast., 2007, 23(6): 980 | [20] | Kumar P, Kassner M E. Theory for very low stress (“Harper-Dorn”) creep [J]. Scr. Mater., 2009, 60(1): 60 | [21] | Langdon T G. Identifying creep mechanisms in plastic flow [J]. Z Metallk, 2005, 96(6): 522 | [22] | Kassner M E, Rez-Prado M T. Five-power-law creep in single phase metals and alloys [J]. Prog. Mater. Sci., 2000, 45(1): 1 | [23] | Blum W. Creep of crystalline materials: experimental basis, mechanisms and models [J]. Mat. Sci. Eng. a-Struct., 2001, 319: 8 | [24] | Viswanathan G B, Vasudevan V K, Mills M J. Modification of the jogged-screw model for creep of γ-TiAl [J]. Acta Mater., 1999, 47(5): 1399 | [25] | Morrow B M, Kozar R W, Anderson K R, et al. An examination of the use of the Modified Jogged-Screw model for predicting creep behavior in Zircaloy-4 [J]. Acta Mater., 2013, 61(12): 4452 | [26] | Xiang Y X, Deng X M, Xuan F Z, et al. Effect of precipitate-dislocation interactions on generation of nonlinear Lamb waves in creep-damaged metallic alloys [J]. J. Appl. Phys., 2012, 111(10): 104905 | [27] | Le? K T, Svoboda J, Dlouh A. High temperature dislocation processes in precipitation hardened crystals investigated by a 3D discrete dislocation dynamics [J]. Int. J. Plast., 2017, 97: 1 | [28] | Flower H M, Swann P R, West D R F. Silicide precipitation in the Ti-Zr-Al-Si system [J]. Metall. Mater. Trans. B, 1971, 2(12): 3289 | [29] | Shamblen C, Redden T. Creep resistance and high-temperature metallurgical stability of titanium alloys containing gallium [J]. Metall. Trans., 1972, 3(5): 1299 | [30] | Onodera H, Nakazawa S, Ohno K, et al. Creep properties of α+α2 high temperature titanium alloys designed by the aid of thermodynamics [J]. ISIJ. Int, 1991, 31(8): 875 | [31] | Madsen A, Ghonem H. Separating the effects of Ti3Al and silicide precipitates on the tensile and crack growth behavior at room temperature and 593℃ in a near-alpha titanium alloy [J]. J. Mater. Eng. Perform., 1995, 4(3): 301 | [32] | Dong F, He G Q, Zhang G T. Research development of the effect of Si element on titanium alloy [J]. Heat Treatment of Metals, 2007, 32(11): 5 | [32] | 董飞, 何国强, 张贵田. 合金元素 Si 在钛合金中作用的研究进展 [J]. 金属热处理, 2007, 32(11): 5 | [33] | Assadi A T K, Flower H M, West D R F. Creep resistance of certain alloys of the Ti-AI-Zr-Mo-Si system [J]. Met. Technol., 2013, 6(1): 16 | [34] | Neeraj T, Mills M. Short-range order (SRO) and its effect on the primary creep behavior of a Ti-6wt.% Al alloy [J]. Mater. Sci. Eng. A, 2001, 319: 415 | [35] | Webster G, Cox A, Dorn J. A relationship between transient and steady-state creep at elevated temperatures [J]. Met. Sci. J., 1969, 3(1): 221 | [36] | Ajaja O, Ardell A. Microstructure and transient creep in an austenitic stainless steel [J]. Philos. Mag. A, 1979, 39(1): 65 | [37] | Choudhary B, Samuel E I. Creep behaviour of modified 9Cr-1Mo ferritic steel [J]. J. Nucl. Mater., 2011, 412(1): 82 | [38] | Rae C M F, Reed R C. Primary creep in single crystal superalloys: Origins, mechanisms and effects [J]. Acta Mater., 2007, 55(3): 1067 | [39] | Rae C M F, Matan N, Reed R C. The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at 750℃ and 750 MPa [J]. Mater. Sci. Eng. A, 2001, 300(1-2): 125 | [40] | ES-Souni M. Primary and anelastic creep of a near α-Ti alloy and their dependencies on stress and temperature [J]. Mech. Time-Depend. Mater., 1998, 2(3): 211 | [41] | ES-Souni M. Primary, secondary and anelastic creep of a high temperature near α-Ti alloy Ti6242Si [J]. Mater. Charact., 2000, 45(2): 153 | [42] | Gollapudi S, Satyanarayana D V V, Phaniraj C, et al. Transient creep in titanium alloys: Effect of stress, temperature and trace element concentration [J]. Mater. Sci. Eng. A, 2012, 556: 510 | [43] | Chen W, Boehlert C. Effect of boron on the elevated-temperature tensile and creep behavior of cast Ti-6Al-2Sn-4Zr-2Mo-0.1 Si (weight percent) [J]. Metall. Mater. Trans. A, 2009, 40(7): 1568 | [44] | Phaniraj C, NandagopaL M, Mannan S, et al. The relationship between transient and steady state creep in AISI 304 stainless steel [J]. Acta Metall. Mater., 1991, 39(7): 1651 | [45] | Phaniraj C, RAO K B S, SL M. Creep deformation behaviour and kinetic aspects of 9Cr-1Mo ferritic steel [J]. ISIJ. Int., 2001, 41(Suppl): S73 | [46] | Nabarro F R N. Creep in commercially pure metals [J]. Acta Mater., 2006, 54(2): 263 | [47] | Hofmann H, Frommeyer G, Derder C. Creep mechanisms in particle strengthened α-Titanium-Ti2Co alloys [J]. Mater. Sci. Eng. A, 1998, 245(1): 127 | [48] | Paton N E, Mahoney M W. Creep of titanium-silicon alloys [J]. Metall. Trans. A, 1976, 7(11): 1685 | [49] | Yue K, Liu J R, Zhang H J, et al. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2019. | [50] | Yue K, Liu J R, Zhu S X, et al. Origins of different tensile behaviors induced by cooling rate in a near alpha titanium alloy Ti65 [J]. Mater., 2018, 1: 128 | [51] | Miller W, Chen R, Starke E. Microstructure, creep, and tensile deformation in Ti-6Al-2Nb-1Ta-0.8Mo [J]. Metall. Trans. A, 1987, 18(8): 1451 | [52] | Chan K S. A micromechanical analysis of the yielding behavior of individual widmanst?tten colonies of an α+ β titanium alloy [J]. Metall. Mater. Trans. A, 2004, 35(11): 3409 | [53] | Marquis E A, Dunand D C. Model for creep threshold stress in precipitation-strengthened alloys with coherent particles [J]. Scr. Mater., 2002, 47(8): 503 | [54] | Ivanov L, Yanushkevich V. The mechanism of fatigue creep of body-centered cubic metals [J]. Fiz. Metal. Metal., 1964, 17: 112 | [55] | Blum W. Role of Dislocation Annihilation during Steady-State Deformation [J]. Phys. Status Solidi B, 1971, 45(2): 561 | [56] | Weertman J, Wilshire B, Owen D. Natural Fifth Power Creep law for Pure Metals [M]. Creep and Fracture of Engineering Materials and Structures. Pineridge Press. 1984 | [57] | Li H, Boehlert C J, Bieler T R, et al. Analysis of the deformation behavior in tension and tension-creep of Ti-3Al-2.5V (wt pct) at 296 K and 728 K (23℃ and 455℃) using in situ SEM experiments [J]. Metall. Mater. Trans. A, 2014, 45(13): 6053 | [58] | Li H, Boehlert C J, Bieler T R, et al. Analysis of slip activity and heterogeneous deformation in tension and tension-creep of Ti-5Al-2.5Sn (wt%) usingin-situ SEM experiments [J]. Philos. Mag., 2012, 92(23): 2923 | [59] | Li H, Mason D E, Yang Y, et al. Comparison of the deformation behaviour of commercially pure titanium and Ti-5Al-2.5Sn(wt.%) at 296 and 728?K [J]. Philos. Mag., 2013, 93(21): 2875 | [60] | Dastidar I G, Khademi V, Bieler T R, et al. The tensile and tensile-creep deformation behavior of Ti-8Al-1Mo-1V(wt%) [J]. Mater. Sci. Eng. A, 2015, 636: 289 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|