|
|
激光功率和扫描速度对SLM制备Ti5553合金性能的影响 |
王铭宇1,3, 李述军2( ), 和正华1,3( ), 唐明德1,3, 张思倩1,3, 张浩宇1,3, 周舸1,3, 陈立佳1,3 |
1.沈阳工业大学材料科学与工程学院 沈阳 110870 2.中国科学院金属研究所 沈阳 110016 3.沈阳工业大学 沈阳市先进结构材料与应用重点实验室 沈阳 110870 |
|
Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM |
WANG Mingyu1,3, LI Shujun2( ), HE Zhenghua1,3( ), TANG Mingde1,3, ZHANG Siqian1,3, ZHANG Haoyu1,3, ZHOU Ge1,3, CHEN Lijia1,3 |
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.Shenyang Key Laboratory of Advanced Structural Materials and Applications, Shenyang University of Technology, Shenyang 110870, China |
引用本文:
王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
Mingyu WANG,
Shujun LI,
Zhenghua HE,
Mingde TANG,
Siqian ZHANG,
Haoyu ZHANG,
Ge ZHOU,
Lijia CHEN.
Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. Chinese Journal of Materials Research, 2025, 39(8): 583-591.
[1] |
Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications [M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003: 1
|
[2] |
Fanning J C, Boyer R R. Ti-2003 Science and Technology [M]. Weinheim: Wiley VCH, 2004: 1
|
[3] |
Jones N G, Dashwood R J, Jackson M, et al. β phase decomposition in Ti-5Al-5Mo-5V-3Cr [J]. Acta Mater., 2009, 57: 3830
|
[4] |
Boyer R R, Briggs R D. The use of β titanium alloys in the aerospace industry [J]. J. Mater. Eng. Perform., 2005, 14: 681
|
[5] |
Zhang H. Effects of heat treatment on microstructures and properties ofa new type high strength beta titanium alloy [D]. Xi'an: Xi'an University of Architecture and Technology, 2013
|
[5] |
张 虎. 热处理工艺对新型高强β钛合金组织和性能的影响 [D]. 西安: 西安建筑科技大学, 2013
|
[6] |
Panza-Giosa R. The effect of heat treatment on the microstructure evolution and mechanical properties of Ti-5Al-5V-5Mo-3Cr, and its potential application in landing gears [D]. Hamilton: McMaster University, 2010
|
[7] |
Warchomicka F, Poletti C, Stockinger M. Study of the hot deformation behaviour in Ti-5Al-5Mo-5V-3Cr-1Zr [J]. Mater. Sci. Eng., 2011, 528A: 8277
|
[8] |
Jérôme P. Advanced materials and technology for A380 structure [J]. Aeronaut. Maint. Eng., 2003, (6): 50
|
[8] |
杰罗姆P. A380结构的先进材料和技术-未来发展的技术平台 [J]. 航空维修与工程, 2003, (6): 50
|
[9] |
Parida A K, Maity K. Analysis of some critical aspects in hot machining of Ti-5553 superalloy: experimental and FE analysis [J]. Def. Technol., 2019, 15: 344-352
doi: 10.1016/j.dt.2018.10.005
|
[10] |
Zopp C, Blümer S, Schubert F, et al. Processing of a metastable titanium alloy (Ti-5553) by selective laser melting [J]. Ain Shams Eng. J., 2017, 8: 475
|
[11] |
Kurzynowski T, Pawlak A, Smolina I. The potential of SLM technology for processing magnesium alloys in aerospace industry [J]. Arch. Civ. Mech. Eng., 2020, 20: 23
|
[12] |
Zhang W N, Wang L Z, Feng Z X, et al. Research progress on selective laser melting (SLM) of magnesium alloys: a review [J]. Optik, 2020, 207: 163842
|
[13] |
Huang J, Yan X C, Chang C, et al. Pure copper components fabricated by cold spray (CS) and selective laser melting (SLM) technology [J]. Surf. Coat. Technol., 2020, 395: 125936
|
[14] |
Vekilov S S, Lipovskyi V I, Marchan R A, et al. Distinctive features of SLM technology application for manufacturing of LPRE components [J]. J. Rocket-Space Technol., 2021, 29(4): 112
|
[15] |
Jia H L, Sun H, Wang H Z, et al. Scanning strategy in selective laser melting (SLM): a review [J]. Int. J. Adv. Manuf. Technol., 2021, 113: 2413
|
[16] |
Razavykia A, Brusa E, Delprete C, et al. An overview of additive manufacturing technologies—a review to technical synthesis in numerical study of selective laser melting [J]. Materials (Basel), 2020, 13(17): 3895
|
[17] |
Zhou X, Dai N, Chu M Q, et al. X-ray CT analysis of the influence of process on defect in Ti-6Al-4V parts produced with Selective Laser Melting technology [J]. Int. J. Adv. Manuf. Technol., 2020, 106: 3
|
[18] |
Gong H J, Rafi K, Gu H F, et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting [J]. Mater. Des., 2015, 86: 545
|
[19] |
Fousová M, Vojtěch D, Kubásek J, et al. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process [J]. J. Mech. Behav. Biomed. Mater., 2017, 69: 368
doi: S1751-6161(17)30054-1
pmid: 28167428
|
[20] |
Choy S Y, Sun C N, Leong K F, et al. Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density [J]. Addit. Manuf., 2017, 16: 213
|
[21] |
Liu W, Chen C Y, Shuai S S, et al. Study of pore defect and mechanical properties in selective laser melted Ti6Al4V alloy based on X-ray computed tomography [J]. Mater. Sci. Eng., 2020, 797A: 139981
|
[22] |
Bertoli U S, Wolfer A J, Matthews M J, et al. On the limitations of volumetric energy density as a design parameter for selective laser melting [J]. Mater. Des., 2017, 113: 331
|
[23] |
Shi X Z, Yan C, Feng W W, et al. Effect of high layer thickness on surface quality and defect behavior of Ti-6Al-4V fabricated by selective laser melting [J]. Opt. Lasers Technol., 2020, 132: 106471
|
[24] |
Wang F Z, Zhang C H, Cui X, et al. Effect of energy density on the defects, microstructure, and mechanical properties of selective-laser-melted 24CrNiMo low-alloy steel [J]. J. Mater. Eng. Perform., 2022, 31: 3520
|
[25] |
Kirka M M, Lee Y, Greeley D A, et al. Strategy for texture management in metals additive manufacturing [J]. JOM, 2017, 69(3): 523
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|