Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (8): 583-591    DOI: 10.11901/1005.3093.2024.398
  研究论文 本期目录 | 过刊浏览 |
激光功率和扫描速度对SLM制备Ti5553合金性能的影响
王铭宇1,3, 李述军2(), 和正华1,3(), 唐明德1,3, 张思倩1,3, 张浩宇1,3, 周舸1,3, 陈立佳1,3
1.沈阳工业大学材料科学与工程学院 沈阳 110870
2.中国科学院金属研究所 沈阳 110016
3.沈阳工业大学 沈阳市先进结构材料与应用重点实验室 沈阳 110870
Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM
WANG Mingyu1,3, LI Shujun2(), HE Zhenghua1,3(), TANG Mingde1,3, ZHANG Siqian1,3, ZHANG Haoyu1,3, ZHOU Ge1,3, CHEN Lijia1,3
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Shenyang Key Laboratory of Advanced Structural Materials and Applications, Shenyang University of Technology, Shenyang 110870, China
引用本文:

王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
Mingyu WANG, Shujun LI, Zhenghua HE, Mingde TANG, Siqian ZHANG, Haoyu ZHANG, Ge ZHOU, Lijia CHEN. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. Chinese Journal of Materials Research, 2025, 39(8): 583-591.

全文: PDF(14018 KB)   HTML
摘要: 

用选区激光熔化(SLM)工艺制备Ti-5Al-5Mo-5V-3Cr (Ti5553)合金构件,研究了激光功率和扫描速度对其致密度、微观缺陷和力学性能的影响。结果表明,随着激光能量密度的提高构件样品中的缺陷减少,致密度提高,激光功率为110~120 W、扫描速度为300~500 mm/s的样品其致密度高于99.99%。样品中的缺陷有形状不规则的未熔合缺陷和规则匙孔。在能量密度较低(~111 J/mm3)的条件下制备的样品中的未熔合缺陷,随着能量密度的提高而减少;在能量密度过高(~167 J/mm3)的条件下制备的样品其缺陷是体积分数较小、形状规则、球形度较好的匙孔。在致密度高于99%的条件下制备样品其屈服强度较高,最高达到864 MPa。

关键词 金属材料Ti5553SLM致密度压缩性能    
Abstract

Bulk Ti-5Al-5Mo-5V-3Cr (Ti5553) alloy was prepared by selective laser melting (SLM) technique, then the effect of laser power and scanning speed on the relative density, microstructural defects, and mechanical properties of the prepared alloy was assessed. The results indicate that as laser energy density increases, defects in the Ti5553 alloy decrease and relative density is improved. By laser power within the range 110-120 W and scanning speed 300-500 mm/s, the relative density of the alloy exceeded 99.99%. The main defects in the alloy include irregularly shaped lack-of-fusion defects and regular keyholes. Lack-of-fusion defects mainly existed in the alloys prepared by laser of lower energy densities (~111 J/mm³) however which decrease with the increasing laser energy density. Excessive energy density (~167 J/mm³) results in the formation of keyholes of a small volume fraction with regular shape, and good sphericity. Compression test results show that alloys of relative density above 99% exhibit high yield strength, reaching up to 864 MPa. These findings may provide a reference for the research and development in the application selective laser melting for manufacturing workpieces of Ti5553 alloy.

Key wordsmetallic materials    Ti5553    SLM    density    compression performance
收稿日期: 2024-09-27     
ZTFLH:  TG146.23  
基金资助:国家自然科学基金(U2241245);国家自然科学基金(52321001);航空科学基金(2022Z053092001)
通讯作者: 李述军,研究员,shjli@imr.ac.cn,研究方向为医用钛合金及其增材制造研究;
和正华,副教授,hezhh@sut.edu.cn,研究方向为新型磁致伸缩合金与先进钛合金的组织与织构控制
Corresponding author: LI Shujun, Tel: (024)83978841, E-mail: shjli@imr.ac.cn;
HE Zhenghua, Tel: (024)25496301, E-mail: hezhh@sut.edu.cn
作者简介: 王铭宇,男,1998年生,硕士生
图1  SLM扫描策略,层间旋转角度67°
Sample numberingLaser power / WScanning speed / mm·s-1
A170400
A270600
A370800
B1100400
B2100600
B3100800
C1120400
C2120600
C3120800
表1  选取样品的编号和工艺参数
图2  Ti5553合金粉末的SEM形貌
图3  Ti5553合金粉末的粒径和球形度统计
图4  用Archimedes法测出的孔隙率和致密度与能量密度的关系
图5  不同激光功率和扫描速度制备的样品的缺陷的OM图
图6  激光功率为70 W制备的样品的缺陷形貌和尺寸的CT图
Sample numberingA1A2A3B1B2B3C1C2C3
Maximum Feret diameter / mm1.0520.9474.2370.5020.5780.8430.1860.3140.463
表2  CT样品中缺陷的最大弗雷特直径
图7  激光功率为100 W制备的样品内部缺陷的形貌和尺寸的CT图
图8  激光功率为120 W制备的样品内部缺陷的形貌和尺寸的CT图
Sample NumberingCT relative densityOM relative densityOM errorAM relative densityAM error
A198.71%99.25%-0.54%99.05%-0.34%
A296.32%97.44%-1.12%98.17%-1.85%
A391.79%96.28%-4.49%96.32%-4.53%
B199.93%99.88%0.05%99.48%0.45%
B299.62%99.79%-0.17%99.63%-0.01%
B398.83%99.75%-0.92%99.59%-0.76%
C199.99%99.97%0.02%98.28%1.71%
C299.92%99.87%0.05%98.62%1.30%
C399.62%99.91%-0.29%99.14%0.48%
表3  不同方法测试的致密度及其误差
图9  不同工艺参数的样品压缩后的工程应力-应变曲线
Sample numberingEnergy density / J·mm-3Yield strength / MPa
A197.22771.0 ± 9.0
A264.81756.0 ± 11.0
A348.61593.5 ± 8.5
B1138.89843.5 ± 8.5
B292.59852.0 ± 3.0
B369.44687.0 ± 15.0
C1166.67862.5 ± 7.5
C2111.11864.0 ± 14.0
C383.33805.5 ± 5.5
表4  不同参数Ti5553合金样品的能量密度与屈服强度
图10  不同工艺参数Ti5553样品的屈服强度和屈服强度-能量密度图
[1] Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications [M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003: 1
[2] Fanning J C, Boyer R R. Ti-2003 Science and Technology [M]. Weinheim: Wiley VCH, 2004: 1
[3] Jones N G, Dashwood R J, Jackson M, et al. β phase decomposition in Ti-5Al-5Mo-5V-3Cr [J]. Acta Mater., 2009, 57: 3830
[4] Boyer R R, Briggs R D. The use of β titanium alloys in the aerospace industry [J]. J. Mater. Eng. Perform., 2005, 14: 681
[5] Zhang H. Effects of heat treatment on microstructures and properties ofa new type high strength beta titanium alloy [D]. Xi'an: Xi'an University of Architecture and Technology, 2013
[5] 张 虎. 热处理工艺对新型高强β钛合金组织和性能的影响 [D]. 西安: 西安建筑科技大学, 2013
[6] Panza-Giosa R. The effect of heat treatment on the microstructure evolution and mechanical properties of Ti-5Al-5V-5Mo-3Cr, and its potential application in landing gears [D]. Hamilton: McMaster University, 2010
[7] Warchomicka F, Poletti C, Stockinger M. Study of the hot deformation behaviour in Ti-5Al-5Mo-5V-3Cr-1Zr [J]. Mater. Sci. Eng., 2011, 528A: 8277
[8] Jérôme P. Advanced materials and technology for A380 structure [J]. Aeronaut. Maint. Eng., 2003, (6): 50
[8] 杰罗姆P. A380结构的先进材料和技术-未来发展的技术平台 [J]. 航空维修与工程, 2003, (6): 50
[9] Parida A K, Maity K. Analysis of some critical aspects in hot machining of Ti-5553 superalloy: experimental and FE analysis [J]. Def. Technol., 2019, 15: 344-352
doi: 10.1016/j.dt.2018.10.005
[10] Zopp C, Blümer S, Schubert F, et al. Processing of a metastable titanium alloy (Ti-5553) by selective laser melting [J]. Ain Shams Eng. J., 2017, 8: 475
[11] Kurzynowski T, Pawlak A, Smolina I. The potential of SLM technology for processing magnesium alloys in aerospace industry [J]. Arch. Civ. Mech. Eng., 2020, 20: 23
[12] Zhang W N, Wang L Z, Feng Z X, et al. Research progress on selective laser melting (SLM) of magnesium alloys: a review [J]. Optik, 2020, 207: 163842
[13] Huang J, Yan X C, Chang C, et al. Pure copper components fabricated by cold spray (CS) and selective laser melting (SLM) technology [J]. Surf. Coat. Technol., 2020, 395: 125936
[14] Vekilov S S, Lipovskyi V I, Marchan R A, et al. Distinctive features of SLM technology application for manufacturing of LPRE components [J]. J. Rocket-Space Technol., 2021, 29(4): 112
[15] Jia H L, Sun H, Wang H Z, et al. Scanning strategy in selective laser melting (SLM): a review [J]. Int. J. Adv. Manuf. Technol., 2021, 113: 2413
[16] Razavykia A, Brusa E, Delprete C, et al. An overview of additive manufacturing technologies—a review to technical synthesis in numerical study of selective laser melting [J]. Materials (Basel), 2020, 13(17): 3895
[17] Zhou X, Dai N, Chu M Q, et al. X-ray CT analysis of the influence of process on defect in Ti-6Al-4V parts produced with Selective Laser Melting technology [J]. Int. J. Adv. Manuf. Technol., 2020, 106: 3
[18] Gong H J, Rafi K, Gu H F, et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting [J]. Mater. Des., 2015, 86: 545
[19] Fousová M, Vojtěch D, Kubásek J, et al. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process [J]. J. Mech. Behav. Biomed. Mater., 2017, 69: 368
doi: S1751-6161(17)30054-1 pmid: 28167428
[20] Choy S Y, Sun C N, Leong K F, et al. Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density [J]. Addit. Manuf., 2017, 16: 213
[21] Liu W, Chen C Y, Shuai S S, et al. Study of pore defect and mechanical properties in selective laser melted Ti6Al4V alloy based on X-ray computed tomography [J]. Mater. Sci. Eng., 2020, 797A: 139981
[22] Bertoli U S, Wolfer A J, Matthews M J, et al. On the limitations of volumetric energy density as a design parameter for selective laser melting [J]. Mater. Des., 2017, 113: 331
[23] Shi X Z, Yan C, Feng W W, et al. Effect of high layer thickness on surface quality and defect behavior of Ti-6Al-4V fabricated by selective laser melting [J]. Opt. Lasers Technol., 2020, 132: 106471
[24] Wang F Z, Zhang C H, Cui X, et al. Effect of energy density on the defects, microstructure, and mechanical properties of selective-laser-melted 24CrNiMo low-alloy steel [J]. J. Mater. Eng. Perform., 2022, 31: 3520
[25] Kirka M M, Lee Y, Greeley D A, et al. Strategy for texture management in metals additive manufacturing [J]. JOM, 2017, 69(3): 523
[1] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[2] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[3] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[4] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[5] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[6] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[7] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[8] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[9] 刘恩典, 白玉, 李嘉文, 郝海. 双连续互穿铝基多孔复合材料的制备和热处理强化[J]. 材料研究学报, 2025, 39(7): 481-488.
[10] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[12] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.
[13] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[14] 王恒霖, 丁汉林, 柴锋, 罗小兵, 王子健, 项重辰. 调质热处理对不同轧制温度的含Cu低合金高强钢力学性能的影响[J]. 材料研究学报, 2025, 39(6): 401-412.
[15] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.