Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (7): 533-541    DOI: 10.11901/1005.3093.2024.340
  研究论文 本期目录 | 过刊浏览 |
终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响
韩杨燚1,2, 张腾昊1, 张可1(), 赵时雨3, 汪创伟4, 余强5, 李景辉1, 孙新军2
1.安徽工业大学冶金工程学院 马鞍山 243032
2.钢铁研究总院有限公司 工程用钢研究院 北京 100081
3.马鞍山钢铁有限公司 长材事业部 马鞍山 243003
4.攀钢集团研究院有限公司 攀枝花 617000
5.湖南华菱涟源钢铁有限公司技术中心 娄底 411101
Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel
HAN Yangyi1,2, ZHANG Tenghao1, ZHANG Ke1(), ZHAO Shiyu3, WANG Chuangwei4, YU Qiang5, LI Jinghui1, SUN Xinjun2
1.School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
2.Institute for Tructural Steels, Central Iron and Steel Research Institute Co., Ltd., Beijing 100081, China
3.Long Products Business Division, Ma'anshan Iron and Steel Co., Ltd., Ma'anshan 243003, China
4.Pangang Group Research Institute Co., Ltd., Panzhihua 617000, China
5.Hunan Hualing Lianyuan Iron and Steel Co., Ltd., Technical Center, Loudi 411101, China
引用本文:

韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
Yangyi HAN, Tenghao ZHANG, Ke ZHANG, Shiyu ZHAO, Chuangwei WANG, Qiang YU, Jinghui LI, Xinjun SUN. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. Chinese Journal of Materials Research, 2025, 39(7): 533-541.

全文: PDF(13475 KB)   HTML
摘要: 

对Ti-V-Mo复合微合金钢进行热模拟实验,先将其加热至1250 ℃,保温180 s后冷却至890 ℃,保温一定时间并进行压缩变形随后冷却至不同的终冷温度,最后水冷至室温。采用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和维氏硬度计等手段对其表征,研究了终冷温度对其析出相、组织和硬度的影响。结果表明,终冷温度为590 ℃时实验钢的组织为粒状贝氏体,终冷温度为630~690 ℃时其组织为多边形铁素体,终冷温度为730 ℃时其组织为铁素体和马氏体。随着终冷温度的提高,钢中铁素体的平均晶粒尺寸由2.7 μm增大到5.6 μm,(Ti, V, Mo)C析出相的平均尺寸由3.45 nm增大到4.71 nm。随着终冷温度由590 ℃提高到730 ℃其硬度升高后保持平稳再极快地降低。终冷温度为630~660 ℃时其硬度最高为485HV,因为铁素体的细晶强化和(Ti, V, Mo)C的沉淀强化趋于饱和。实验钢中铁素体晶粒尺寸改变引起的细晶强化和(Ti, V, Mo)C的析出引起的沉淀强化,是其硬度变化的主要原因。

关键词 金属材料终冷温度Ti-V-Mo复合微合金钢组织析出相硬度    
Abstract

A Ti-V-Mo composite microalloyed experimental steel was subjected to series heating-deformation treatment via Gleeble-3800 thermal simulation tester, i.e. firstly it was heated to 1250 oC and kept for 180 s, then cooled down to 890 oC and kept for a certain period of time; Subsequently, compression and deformation treatments were carried out; Afterwards, it was cooled to different (final cooling) temperatures and finally water-quenched. The effect of final cooling temperature on the precipitates, microstructure transformation, and hardness of the steel was systematically studied using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Vickers hardness tester. The precipitation behavior of carbides (Ti, V, Mo)C and its influence on the variation of microstructure and hardness of the steels quenched at different final cooling temperatures were clarified. The results indicated that the microstructure of the test steels consist of granular bainite at 590 oC, polygonal ferrite at temperatures ranging from 630 oC to 690 oC and a mixture of ferrite and martensite at 730 oC. With the increasing final cooling temperature, the average grain size of ferrite increased from 2.7 μm to 5.6 μm, and the average size of (Ti, V, Mo)C precipitates increased from 3.45 nm to 4.71 nm. With the increasing final cooling temperature from 590 oC to 730 oC, the hardness increased first, then remain stable and then decreased rapidly. For the isothermal final cooling temperature within the range 630~660 oC, the hardness was up to 485HV, which was due to the saturation of the fine grain strengthening of ferrite and the precipitation strengthening of (Ti, V, Mo)C. The fine grain strengthening caused by ferrite grain refinement and the precipitation strengthening caused by the precipitation of (Ti, V, Mo)C were dominant factors of hardness change at different final cooling temperatures.

Key wordsmetallic materials    final cooling temperature    Ti-V-Mo complex microalloyed steel    microstructure    precipitation    hardness
收稿日期: 2024-08-15     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(52474340);安徽省高等学校科学研究项目(2023AH051090)
通讯作者: 张可,副教授,huzhude@yeah.net,研究方向为先进钢铁材料的基础理论与应用开发
Corresponding author: ZHANG Ke, Tel: 18955578155, E-mail: huzhude@yeah.net
作者简介: 韩杨燚,男,1998年,硕士生
CSiMnTiVMoPSNFe
0.160.161.040.200.410.440.00410.00520.0046Bal.
表1  实验钢的化学成分
图1  Ti-V-Mo实验用钢的热模拟工艺示意图
图 2  实验钢过冷奥氏体的等温转变曲线
图3  不同终冷温度实验钢的OM像
图4  不同终冷温度实验钢的SEM像
图5  不同终冷温度实验钢中铁素体晶粒的平均尺寸
图6  在660 ℃ 终冷实验钢中纳米析出相的HRTEM像、Fourier变换衍射谱和EDS
图7  不同终冷温度实验钢的TEM像和尺寸分布
图8  不同终冷温度实验钢中纳米析出相的平均尺寸
图9  不同终冷温度实验钢的硬度及其拟合曲线
[1] Huo X D, He K, Xia J N, et al. Isothermal transformation and precipitation behaviors of titanium microalloyed steels [J]. J. Iron Steel. Res. Int., 2021, 28(3): 335
[2] Luo H Y, Cao J C, Zeng M, et al. Effect of Zr on deformed austenite recrystallization and precipitates in Ti-microalloyed low carbon steel [J]. Chin. J. Mater. Res., 2022, 36(2): 123
doi: 10.11901/1005.3093.2021.207
[2] 罗瀚宇, 曹建春, 曾 敏 等. Zr对Ti微合金化低碳钢形变奥氏体再结晶和析出相的影响 [J]. 材料研究学报, 2022, 36(2): 123
doi: 10.11901/1005.3093.2021.207
[3] Wang Y X, Chen X R, Zhao H, et al. Effect of cluster chemistry on the strengthening of Al alloys [J]. Acta Mater., 2024, 269: 119809
[4] Bian B X, Söltzer L, Muralikrishna G M, et al. Grain boundary diffusion in a compositionally complex alloy: interplay of segregation, precipitation and interface structures in a Ni-Cr-Mo alloy [J]. Acta Mater., 2024, 269: 119803
[5] Rodriguez-Galeano K F, Nutter J, Azakli Y, et al. Influence of Cr and Cr+Nb on the interphase precipitation and mechanical properties of V-Mo microalloyed steels [J]. Mater. Sci. Eng., 2024, 893A: 146140
[6] Li R H, Hu X Y, Wang Z C, et al. High-temperature mechanical properties and strengthening mechanism of new secondary hardened steel 25CrMo3NiTiVNbZr [J]. Chin. J. Mater. Res., 2024, 38(5): 390
doi: 10.11901/1005.3093.2023.516
[6] 李若浩, 胡霄雨, 王中成 等. 新型二次硬化钢25CrMo3NiTiVNbZr的高温力学性能和强化机理 [J]. 材料研究学报, 2024, 38(5): 390
doi: 10.11901/1005.3093.2023.516
[7] Zhang J, Xin W B, Ge Z W, et al. Effect of high heat input welding on the microstructures, precipitates and mechanical properties in the simulated coarse grained heat affected zone of a low carbon Nb-V-Ti-N microalloyed steel [J]. Mater. Charact., 2023, 199: 112849
[8] Shen T Y, Liu H, Yang G J, et al. Influence of cryogenic treatment time on the mechanical properties of AZ31 magnesium alloy sheets after cross-rolling [J]. J. Alloy. Compd., 2024, 986: 174096
[9] Zhang T H, Wei H Y, Zhang K, et al. Effect of cooling medium on the κ carbide precipitation behavior, microstructure and impact properties of FeMnAlC low-density steel [J]. Mater. Today Commun., 2023, 37: 107084
[10] Yang Y L, Jia X, Ma Y X, et al. Effect of Nb on inclusions and phase transformation in simulated high heat input coarse-grain HAZ of Nb/Ti low carbon microalloyed steel [J]. Mater. Charact., 2022, 189: 111966
[11] Zhu Z M, Yu H, Wang K, et al. Quantitative analysis of precipitation and strengthening mechanisms of V and V-Ti hot-rolled microalloyed steels [J]. J. Mater. Sci., 2022, 57: 4806
[12] Gu C, Scott C, Fazeli F, et al. Evolution of the microstructure and mechanical properties of a V-containing microalloyed steel during coiling [J]. Mater. Sci. Eng., 2023, 880A: 145332
[13] Zhao X J, Zhao K, Liu C B, et al. Effect of ausforming on the bainitic transformation and microstructure in medium carbon V-N micro-alloyed steel [J]. J. Mater. Res. Technol., 2023, 23: 637
[14] Yuan Q, Ren J, Mo J X, et al. Effects of rapid heating on the phase transformation and grain refinement of a low-carbon mciroalloyed steel [J]. J. Mater. Res. Technol., 2023, 23: 3756
[15] Liu W S, Wei H Y, Zhang K, et al. Strain-induced precipitation behavior and microstructure evolution of Ti-V-Mo complex microalloyed steel [J]. J. Mater. Eng. Perform., 2024, 33: 12543
[16] Han R, Liu H X, Wei W C, et al. Precipitates and their strengthening in Ti-V-Mo microalloyed 22MnB5 steel [J]. Iron Steel, 2022, 57(2): 127
[16] 韩 荣, 刘洪喜, 尉文超 等. Ti-V-Mo微合金化22MnB5钢中析出相及其强化作用 [J]. 钢铁, 2022, 57(2): 127
[17] Zhang K, Zhang T H, Wei H Y, et al. Effect of isothermal holding time on microstructure, precipitates and hardness of Ti-V-Mo microalloyed steel during coiling process [J]. J. Mater. Res. Technol., 2024, 32: 753
[18] Zhang K, Li Z D, Sun X J, et al. Development of Ti-V-Mo complex microalloyed hot-rolled 900-MPa-grade high-strength steel [J]. Acta. Metall. Sin. (Engl. Lett.), 2015, 28: 641
[19] He P, Hu H J, Wang W, et al. On the correlation among isothermal transformation, interphase precipitation behaviour and elements partitioning in Ti-Mo microalloyed steel [J]. J. Mater. Res. Technol., 2024, 29: 1901
[20] Fu Z X, Yang G W, Mao X P, et al. Microstructure evolution and precipitation behavior of hot-rolled high-strength Ti-Mo-V micro-alloyed steel [J]. J. Mater. Res. Technol., 2023, 27: 8132
[21] Yi H L, Du L X, Wang G D, et al. Development of Nb-V-Ti hot-rolled high strength steel with fine ferrite and precipitation strengthening [J]. J. Iron Steel Res. Int., 2009, 16(4): 72
[22] Zhao S Y. Study on the nano-precipitation behavior, microstructure and mechanical properties of Ti-V-Mo complex microalloyed steel [D]. Ma′anshan: Anhui University of Technology, 2021
[22] 赵时雨. Ti-V-Mo复合微合金钢纳米相析出行为及组织硬度研究 [D]. 马鞍山: 安徽工业大学, 2021
[23] Gong H C, Fan Q B, Zhang H M, et al. Deciphering the quantitative relationships between age-induced hierarchical microstructure characteristics and tensile properties of Ti20C alloy [J]. Mater. Charact., 2024, 207: 113567
[24] Bhattacharya A, Mondal K, Upadhyay C S, et al. A phase-field investigation of the effect of grain-boundary diffusion on austenite to ferrite transformation [J]. Comp. Mater. Sci., 2020, 173: 109428
[25] Zhou Q R. Research on microstructure and mechanical properties of HG550 beam steel under ultra-fast cooling conditions [D]. Shenyang: Northeastern University, 2015
[25] 周庆茹. 超快冷条件下大梁钢HG550组织性能研究 [D]. 沈阳, 东北大学, 2015
[26] Wang Y Z, Jiang Z H, Jia C N, et al. Microstructure and mechanical properties of an austempered nanostructured bainitic steel [J]. Chin. J. Mater. Res., 2024, 38(4): 279
doi: 10.11901/1005.3093.2023.370
[26] 王玉钊, 蒋中华, 贾春妮 等. 等温淬火对纳米贝氏体钢的组织和力学性能的影响 [J]. 材料研究学报, 2024, 38(4): 279
doi: 10.11901/1005.3093.2023.370
[27] Zhang K, Li Z D, Sui F L, et al. Effect of cooling rate on microstructure evolution and mechanical properties of Ti-V-Mo complex microalloyed steel [J]. Acta Metall. Sin., 2018, 54(1): 31
doi: 10.11900/0412.1961.2017.00202
[27] 张 可, 李昭东, 隋凤利 等. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响 [J]. 金属学报, 2018, 54(1): 31
[28] Cui Z Q, Tan Y C. Metallography and Heat Treatment [M] Beijing: China Machine Press, 2007: 410
[28] 崔忠圻, 谭耀春. 金属学与热处理 [M]. 北京: 机械工业出版社, 2007: 410
[29] Zhang K, Wang H, Sun X J, et al. Precipitation behavior and microstructural evolution of ferritic Ti-V-Mo complex microalloyed steel [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 997
[30] Ollilainen V, Kasprzak W, Holappa L. The effect of silicon, vanadium and nitrogen on the microstructure and hardness of air cooled medium carbon low alloy steels [J]. J. Mater. Process. Technol., 2003, 134: 405
[31] Gan X L, Yuan Q, Zhao G, et al. Quantitative analysis of microstructures and strength of Nb-Ti microalloyed steel with different Ti additions [J]. Metall. Mater. Trans., 2020, 51A: 2084
[32] Chen C Y, Yang J R, Chen C C, et al. Microstructural characterization and strengthening behavior of nanometer sized carbides in Ti-Mo microalloyed steels during continuous cooling process [J]. Mater. Charact., 2016, 114: 18
[33] Guo F, Zheng C W, Wang P, et al. Effect of rare earth elements on austenite-ferrite phase transformation kinetics of low carbon steels [J]. Chin. J. Mater. Res., 2023, 37(7): 495
doi: 10.11901/1005.3093.2022.109
[33] 郭 飞, 郑成武, 王 培 等. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响 [J]. 材料研究学报, 2023, 37(7): 495
[34] Sun J, Liu G, Yang C, et al. Heat-resistant Al alloys: microstructural design and preparation [J]. Acta Metall. Sin, 2025, 61: 521
doi: 10.11900/0412.1961.2024.00345
[34] 孙 军, 刘 刚, 杨 冲 等. 耐热铝合金: 组织设计与合金制备 [J]. 金属学报, 2025, 61: 521
[35] Wang J T, Beladi H, Pan L B, et al. Interphase precipitation hardening of a TiMo microalloyed dual-phase steel produced by continuous cooling [J]. Mater. Sci. Eng., 2021, 804A: 140518
[36] Bu F Z, Wang Y B, Zheng L H, et al. Precipitation of nanoscale carbides in Ti-Mo microalloyed steel during tempering process [J]. J. Iron Steel Res., 2018, 30(11): 928
[36] 卜凡征, 王玉斌, 郑连辉 等. Ti-Mo微合金钢回火过程中纳米碳化物析出行为 [J]. 钢铁研究学报, 2018, 30(11): 928
doi: 10. 13228/j.boyuan.issn1001- 0963. 20180080
[37] Yong Q L. Second Phases in Structural Steels [M]. Beijing: Metallurgical Industry Press, 2006: 1
[37] 雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 1
[38] Karmakar A, Mukherjee S, Kundu S, et al. Effect of composition and isothermal holding temperature on the precipitation hardening in Vanadium-microalloyed steels [J]. Mater. Charact., 2017, 132: 31
[39] Zhang K, Yong Q L, Sun X J, et al. Effect of coiling temperature on micro-structure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel [J]. Acta Metall. Sin., 2016, 52(5): 529
doi: 10.11900/0412.1961.2015.00411
[39] 张 可, 雍岐龙, 孙新军 等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响 [J]. 金属学报, 2016, 52(5): 529
[40] Kim Y W, Song S W, Seo S J, et al. Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule [J]. Mater. Sci. Eng., 2013, 565A: 430
[41] Pavlina E J, Van Tyne C J. Correlation of yield strength and tensile strength with hardness for steels [J]. J. Mater. Eng. Perform., 2008, 17: 888
[1] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[2] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[3] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[4] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[5] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.
[6] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[7] 王恒霖, 丁汉林, 柴锋, 罗小兵, 王子健, 项重辰. 调质热处理对不同轧制温度的含Cu低合金高强钢力学性能的影响[J]. 材料研究学报, 2025, 39(6): 401-412.
[8] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[9] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[10] 李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.
[11] 邱玮, 李玉林, 闫瑞, 李雅文, 陈维, 甘浪, 任延杰, 陈荐. Al对镁空气电池用挤压态Mg-Al-Ca-Mn合金阳极腐蚀和放电性能的影响[J]. 材料研究学报, 2025, 39(5): 389-400.
[12] 吴玉程, 左彤, 谭晓月, 朱晓勇, 刘家琴. 第一壁自钝化W-Cr-Zr合金的氧化行为和氧化层结构[J]. 材料研究学报, 2025, 39(5): 343-352.
[13] 任学昌, 安菊, 付宁, 姚小庆, 杨镇瑜, 陈泓锦. 在模拟太阳光下溶剂热时长对MIL-88A(Fe)活化过一硫酸盐降解罗丹明B催化性能的影响[J]. 材料研究学报, 2025, 39(5): 329-342.
[14] 符纯国, 徐世伟, 杨晓益, 李萌蘖. 焊接热源模式对5083-H111铝合金接头性能的影响[J]. 材料研究学报, 2025, 39(4): 305-313.
[15] 李红蕾, 刘闯, 卢政伟, 褚天义, 陈育秋, 姜肃猛, 宫骏, 裴志亮. Ni-Al2O3/Diamond复合涂层的制备和性能[J]. 材料研究学报, 2025, 39(4): 314-320.