Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (7): 510-520    DOI: 10.11901/1005.3093.2024.411
  研究论文 本期目录 | 过刊浏览 |
面向等离子体第一壁W-Y2O3 复合材料的力学性能
陈昱溟1,2, 朱晓勇1,2,3, 谭晓月1,2,3, 刘家琴3,4,5, 吴玉程1,2,3()
1.合肥工业大学材料科学与工程学院 合肥 230009
2.合肥工业大学 有色金属材料与加工技术国家地方联合工程研究中心 合肥 230009
3.合肥工业大学 先进能源材料与环境国际合作基地 合肥 230009
4.北京化工大学化学学院 北京 100029
5.安徽省先进复合材料设计与应用工程中心 合肥 230051
Mechanical Properties of W-Y2O3 Composites as Candidate of the First Wall Material Faced Plasma
CHEN Yuming1,2, ZHU Xiaoyong1,2,3, TAN Xiaoyue1,2,3, LIU Jiaqin3,4,5, WU Yucheng1,2,3()
1.School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2.National-Local Joint Engineering Research Center of Nonferrous Metals and Processing Technology, Hefei University of Technology, Hefei 230009, China
3.National International Science and Technology Cooperation Base for Advanced Energy and Environmental Materials, Hefei University of Technology, Hefei 230009, China
4.College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
5.Engineering Research Center of Advanced Composite Materials Design & Application of Anhui Province, Hefei 230051, China
引用本文:

陈昱溟, 朱晓勇, 谭晓月, 刘家琴, 吴玉程. 面向等离子体第一壁W-Y2O3 复合材料的力学性能[J]. 材料研究学报, 2025, 39(7): 510-520.
Yuming CHEN, Xiaoyong ZHU, Xiaoyue TAN, Jiaqin LIU, Yucheng WU. Mechanical Properties of W-Y2O3 Composites as Candidate of the First Wall Material Faced Plasma[J]. Chinese Journal of Materials Research, 2025, 39(7): 510-520.

全文: PDF(20121 KB)   HTML
摘要: 

在不同温度进行再结晶退火的W-Y2O3复合材料和去应力退火态纯W的拉伸实验并观察其断口的显微组织,研究了添加稀土氧化物Y2O3对W材料力学性能的影响。结果表明,在300~800 ℃拉伸W-Y2O3和纯W,随着拉伸温度的提高其抗拉强度都逐渐降低,伸长率先提高后降低。随着拉伸温度的提高W-Y2O3复合材料和纯W的拉伸行为都遵循“脆性”-“伪塑性”-“本征塑性”的韧脆转变过程;在相同温度拉伸,W-Y2O3的高温塑性比纯W的好。在600 ℃拉伸时W-Y2O3的塑韧性最佳,其断后伸长率可达~46%。拉伸曲线表明,W-Y2O3出现塑性行为的温度在300 ℃附近而纯W出现塑性行为的温度在400 ℃附近。应变硬化阶段的本构方程表明,纯W遵循Hollomon's方程的幂函数强化行为,而W-Y2O3在均匀塑性变形前期表现出对数函数强化行为,在均匀塑性变形后期与纯W的幂函数强化行为相同。这表明,添加稀土Y2O3可提高W材料的塑韧性、降低脆性和韧脆转变温度。

关键词 金属基复合材料弥散强化高温拉伸韧脆转变    
Abstract

Tungsten and tungsten-based materials are one of the most promising candidate of the first wall material faced plasma atmospheres for future nuclear fusion devices, and their brittleness and mechanical properties have always been the focus of attention. Herein, the tensile behavior at 300~800 °C of W-Y2O3 composites after recrystallization annealed at different temperatures and pure W after stress relief annealed were comparatively assessed at 300~800 °Cvia high temperature tensile testing machine, in terms of the effect of addition of rare earth oxide Y2O3 on the mechanical properties of W-composites. It was found that with the increasing temperature, the tensile strength of W and W-Y2O3 composites decreased gradually, and the corresponding break elongation increased first and then decreased; while the tensile behavior of W and W-Y2O3 composites all follow the ductile-brittle transition process, namely brittleness-pseudoplasticity-intrinsic plasticity. If tensile testing at the same temperature, W-Y2O3 composites exhibit better high plastic behavior than pure W. Whereas, W-Y2O3 composites present the best plasticity and toughness at 600 oC, with a break elongation even up to ~46%. In addition, from the acquired tensile curves, it is found that the temperature at which pure W exhibits plastic behavior is near 400 °C, while the temperature at which W-Y2O3 exhibits plastic behavior is near 300 °C. The constitutive equation of their strain hardening stage shows that pure W followed the power function strengthening behavior dominated by Hollomon's equation, while W-Y2O3 shows logarithmic function strengthening behavior in the early stage of uniform plastic deformation, and the same power function strengthening behavior as that of pure W in the later stage of uniform plastic deformation. It follows that the addition of Y2O3 can significantly enhance the plasticity and toughness of W composites, while reducing their brittleness and ductile-brittle transition temperature.

Key wordsmetal matrix composites    dispersion strengthening    high temperature tensile    ductile-brittle transition
收稿日期: 2024-10-08     
ZTFLH:  TG146.4+11  
基金资助:国家自然科学基金国际(地区)交流与合作重点项目(52020105014);国家自然科学基金面上资助项目(51474083);国家自然科学基金面上资助项目(51672065);国家重大研发计划磁约束核聚变重大专项(2022YFE03140001);国家重大研发计划磁约束核聚变重大专项(2022YFE03140004);国家重大研发计划磁约束核聚变重大专项(2019YFE03120002);国家重大研发计划磁约束核聚变重大专项(2022YFE03030003);国家“清洁能源新材料与技术”学科创新引智基地项目(B18018)
通讯作者: 吴玉程,教授,ycwu@hfut.edu.cn,研究方向为能源材料、粉末冶金与纳米材料
Corresponding author: WU Yucheng, Tel: (0551)62905985, E-mail: ycwu@hfut.edu.cn
作者简介: 陈昱溟,男,1995年生,博士生
图1  拉伸试样的尺寸
图2  高温拉伸实验装置
图3  W-Y2O3复合材料轧制前和轧制后的RD-TD面、RD-ND面和ND-TD面的显微组织。图3a, d, g和j为腐蚀前表面,其余为腐蚀后的表面
图4  轧制变形后W-Y2O3复合材料不同表面的晶粒尺寸分布和长宽比
图5  纯W和W-Y2O3复合材料的工程应力-应变曲线
T / oCPure WW-Y2O3
σs / MPaεp / %σs / MPaεp / %
300702.52.4458.06.1
400546.911.1436.521.3
500478.310.0376.730.3
600426.19.4338.332.7
800387.05.5278.230.7
表1  纯W和W-Y2O3复合材料的抗拉强度和对应的伸长率
图6  纯W在不同温度下拉伸的断口形貌
图7  W-Y2O3复合材料在不同温度拉伸的断口形貌
图8  纯W在400 ℃和W-Y2O3复合材料在600 ℃的工程应力-应变曲线、真实应力-应变曲线以及本构方程拟合曲线
图9  纯W和W-Y2O3复合材料在不同温度拉伸的真实应力-应变曲线和相应本构方程拟合曲线(相同颜色的曲线对应同一拉伸温度)
T / oCK1n1K2n2εut / %
400781.70.109770.10.10210.3
500674.60.092664.60.0859.3
600574.00.085565.50.0798.8
800486.00.052477.10.0455.2
表2  用Hollomon's方程拟合纯W高温拉伸的真实应力-应变关系的强度系数和应变硬化指数
T / oCabKnεut / %
300//1228.20.32135.8
400139.7772.5818.50.261319.3
500126.8672.1712.80.278226.4
60096.1554.9651.40.293328.2
80080.2465.5531.30.274326.4
表3  用本构方程拟合的W-Y2O3复合材料在不同温度拉伸后的真实应力-应变关系参数
[1] Şahin Y. Recent progress in processing of tungsten heavy alloys [J]. J. Powder Technol., 2014, 2014: 764306
[2] Kiran U R, Panchal A, Sankaranarayana M, et al. Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys [J]. Mater. Sci. Eng., 2015, 640A: 82
[3] Cai W D, Li Y, Dowding R J, et al. A review of tungsten-based alloys as kinetic energy penetrator materials [J]. Rev. Part. Mater., 1995, 3: 71
[4] Ramakrishnan P. Powder Metallurgy for Aerospace Application, Powder Metallurgy: Processing for Antomotive, Electrical/Electronic and Engineering Industry [M]. New Delhi: New Age International, 2017
[5] Neu R, Hopf C, Kallenbach A, et al. Operational conditions in a W-clad tokamak [J]. J. Nucl. Mater., 2007, 367-370: 1497
[6] German R M. Critical developments in tungsten heavy alloys [A]. Tungsten and Tungsten Alloys [C]. New Jersey: Metal Powder Industries Federation, 1992
[7] Coenen J W, Antusch S, Aumann M, et al. Materials for DEMO and reactor applications—Boundary conditions and new concepts [J]. Phys. Scr., 2016, 2016: 014002
[8] Travere J M, Aumeunier M H, Joanny M, et al. Imaging challenges for ITER plasma-facing component protection [J]. Fusion Sci. Technol., 2013, 64: 735
[9] Wu Y C. Manufacturing of tungsten and tungsten composites for fusion application via different routes [J]. Tungsten, 2019, 1: 80
[10] Wenninger R P, Bernert M, Eich T, et al. DEMO divertor limitations during and in between ELMs [J]. Nucl. Fusion, 2014, 54(11): 114003
[11] Launey M E, Ritchie R O. On the fracture toughness of advanced materials [J]. Adv. Mater., 2009, 21: 2103
[12] Zhao P, Riesch J, Höschen T, et al. Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments [J]. Int. J. Refract. Met. Hard Mater., 2017, 68: 29
[13] Tan X Y, Luo L M, Chen H Y, et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation [J]. Sci. Rep., 2015, 5(1): 12755
[14] Chen H Y, Luo L M, Chen J B, et al. Effects of zirconium element on the microstructure and deuterium retention of W-Zr/Sc2O3 composites [J]. Sci. Rep., 2016, 6(1): 32678
[15] Cui Y Q, Niu C J, Lv J H, et al. Effect of helium ions irradiation at high temperature on surface morphology of tungsten [J]. Chin. J. Mater. Res., 2024, 38(6): 437
doi: 10.11901/1005.3093.2023.291
[15] 崔运秋, 牛春杰, 吕建骅 等. 高温氦离子辐照对钨表面形貌的影响 [J]. 材料研究学报, 2024, 38(6): 437
doi: 10.11901/1005.3093.2023.291
[16] Hu R H, Yang Z, Lei Q J, et al. Effect of helium ions irradiation on stability of nano-tungsten whiskers [J]. Chin. J. Mater. Res., 2022, 36(11): 850
doi: 10.11901/1005.3093.2021.622
[16] 胡瑞航, 杨 贞, 雷齐俊 等. 氦离子辐照对钨纳米丝稳定性的影响 [J]. 材料研究学报, 2022, 36(11): 850
doi: 10.11901/1005.3093.2021.622
[17] Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55(2): 171
doi: 10.11900/0412.1961.2018.00404
[17] 吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55(2): 171
doi: 10.11900/0412.1961.2018.00404
[18] Tan X Y, Luo L M, Lu Z L, et al. Development of tungsten as plasma-facing materials by doping tantalum carbide nanoparticles [J]. Powder Technol., 2015, 269: 437
[19] Wang K, Zan X, Yu M, et al. Effects of thickness reduction on recrystallization process of warm-rolled pure tungsten plates at 1350 oC [J]. Fusion Eng. Des., 2017, 125: 521
[20] Tan X Y, Li P, Luo L M, et al. Effect of second-phase particles on the properties of W-based materials under high-heat loading [J]. Nucl. Mater. Energy, 2016, 9: 399
[21] Ding H L, Xie Z M, Fang Q F, et al. Determination of the DBTT of nanoscale ZrC doped W alloys through amplitude-dependent internal friction technique [J]. Mater. Sci. Eng., 2018, 716A: 268
[22] Itoh Y, Ishiwata Y. Strength properties of yttrium-oxide-dispersed tungsten alloy [J]. JSME Int. J., 1996, 39A(3) : 429
[23] Veleva L. Contribution to the production and characterization of W-Y, W-Y2O3 and W-TiC materials for fusion reactors [D]. EPFL, 2011
[24] Richardson F D. Thermodynamics of substances of interest in iron and steel making from 0 oC to 2400 oC [J]. J. Iron Steel Inst., 1948, 160: 261
[25] Richardson F D, Jeffes J H E. The thermodynamics of substances of interest in iron and steel making. III. Sulfides [J]. J. Iron Steel Inst., 1952, 171: 165
[26] Rieth M, Dafferner B. Limitations of W and W-1%La2O3 for use as structural materials [J]. J. Nucl. Mater., 2005, 342(1-3): 20
[27] Tanabe T, Noda N, Nakamura H. Review of high Z materials for PSI applications [J]. J. Nucl. Mater., 1992, 196-198: 11
[28] Chuyanov V A. ITER EDA project status [J]. J. Nucl. Mater., 1996, 233-237: 4
[29] Nakamura K, Suzuki S, Satoh K, et al. Erosion of CFCs and W at high temperature under high heat loads [J]. J. Nucl. Mater., 1994, 212-215: 1201
[30] Liu Q K, Zu F Q, Li M S. Fundamentals of Materials Forming Processes [M]. Beijing: China Machine Press, 2008
[30] 刘全坤, 祖方遒, 李萌盛. 材料成形基本原理 [M]. 北京: 机械工业出版社, 2008
[31] Zhao Y H, Guo Y Z, Wei Q, et al. Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu [J]. Scr. Mater., 2008, 59: 627
[32] Strnadel B, Brumek J. The size effect in tensile test of steels [A]. ASME 2013 Pressure Vessels and Piping Conference [C]. Paris, 2013
[33] Klünsner T, Wurster S, Supancic P, et al. Effect of specimen size on the tensile strength of WC-Co hard metal [J]. Acta Mater., 2011, 59: 4244
[34] Shu D L. Mechanical Properties of Engineering Materials [M]. Beijing: China Machine Press, 2008
[34] 束德林. 工程材料力学性能 [M]. 北京: 机械工业出版社, 2008
[35] Hollomon J H. Tensile deformation [J]. Trans. Metall. Soc. AIME, 1945, 162: 268
[36] Wu Y C, Hou Q Q, Luo L M, et al. Preparation of ultrafine-grained/nanostructured tungsten materials: An overview [J]. J. Alloy. Compd., 2019, 779: 926
[37] Bowen A W, Partridge P G. Limitations of the Hollomon strain-hardening equation [J]. J. Phys. D: Appl. Phys., 1974, 7: 969
[1] 谢锐, 吕铮, 徐长伟, 王晴, 刘春明. 含钛氧化物弥散强化钢的微观组织和力学性能[J]. 材料研究学报, 2022, 36(2): 99-106.
[2] 赵孟雅, 彭涛, 赵吉庆, 杨钢, 杨滨. 长期时效对20Cr1Mo1VTiB螺栓钢的组织和力学性能的影响[J]. 材料研究学报, 2020, 34(5): 321-327.
[3] 谭稀, 宋玉哲, 史鑫, 强进, 魏廷轩, 卢启海. 自旋阀多层膜磁化翻转场的调控和磁电阻特性[J]. 材料研究学报, 2020, 34(4): 272-276.
[4] 程磊,余伟,蔡庆伍. 显微带细化组织和两相组织对低Cr合金钢高温断裂行为的影响[J]. 材料研究学报, 2020, 34(1): 21-28.
[5] 胡银生,余欢,徐志锋,蔡长春,聂明明. 纤维预热温度对连续Al2O3f/Al复合材料力学性能的影响[J]. 材料研究学报, 2019, 33(5): 361-370.
[6] 王建, 杨文静, 李卓梁, 丁桦, 张宁, 侯红亮. 7B04铝合金的超塑变形行为及其机理[J]. 材料研究学报, 2018, 32(9): 675-684.
[7] 高荣贞, 李晓冬, 刘文凤, 尹艳红, 杨书廷. 分级结构类球形MgFe2O4/C复合材料的制备及其储锂性能[J]. 材料研究学报, 2018, 32(9): 713-720.
[8] 闫永其,崔衡,王征,赵爱民. 含P高强IF钢的高温力学性能[J]. 材料研究学报, 2015, 29(8): 602-606.
[9] 王晔 燕青芝 张肖路 葛昌纯 赵海芹. 铜粉对铜基摩擦材料性能的影响*[J]. 材料研究学报, 2013, 27(1): 37-42.
[10] 侯国清 朱亮 边红霞 田彦龙. 应变速率对奥氏体不锈钢Cr17Mn6Ni4Cu2N铸坯热塑性的影响*[J]. 材料研究学报, 2013, 27(1): 70-74.
[11] 栾卫志 姜传海 嵇宁. 喷丸处理对TiB2/Al复合材料表面基体力学性能的影响[J]. 材料研究学报, 2009, 23(3): 237-241.
[12] 王强; 王春江; 庞雪君; 赫冀成 . 利用强磁场控制过共晶铝硅合金的凝固组织[J]. 材料研究学报, 2004, 18(6): 568-576.
[13] 邢宏伟; 曹小明; 胡宛平; 赵龙志; 张劲松 . 三维网络{\bf SiC/Cu}金属基复合材料的凝固显微组织[J]. 材料研究学报, 2004, 18(6): 597-605.
[14] 申玉田; 崔春翔; 徐艳姬; 孟凡斌; 王如 . Cu-Al2O3复合材料的高温塑性变形[J]. 材料研究学报, 2001, 15(6): 611-614.
[15] 齐义辉; 郭建亭; 崔传勇 . NiAl-Cr(Zr)合金的高温力学行为与韧脆转变[J]. 材料研究学报, 2001, 15(2): 209-214.