Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (5): 389-400    DOI: 10.11901/1005.3093.2024.409
  研究论文 本期目录 | 过刊浏览 |
Al对镁空气电池用挤压态Mg-Al-Ca-Mn合金阳极腐蚀和放电性能的影响
邱玮, 李玉林, 闫瑞, 李雅文, 陈维, 甘浪(), 任延杰, 陈荐
长沙理工大学能源与动力工程学院 长沙 410114
Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries
QIU Wei, LI Yulin, YAN Rui, LI Yawen, CHEN Wei, GAN Lang(), REN Yanjie, CHEN Jian
School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China
引用本文:

邱玮, 李玉林, 闫瑞, 李雅文, 陈维, 甘浪, 任延杰, 陈荐. Al对镁空气电池用挤压态Mg-Al-Ca-Mn合金阳极腐蚀和放电性能的影响[J]. 材料研究学报, 2025, 39(5): 389-400.
Wei QIU, Yulin LI, Rui YAN, Yawen LI, Wei CHEN, Lang GAN, Yanjie REN, Jian CHEN. Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries[J]. Chinese Journal of Materials Research, 2025, 39(5): 389-400.

全文: PDF(32296 KB)   HTML
摘要: 

研究了Al含量对镁空气电池用Mg-Al-Ca-Mn合金挤压态阳极在3.5%NaCl电解液中腐蚀和电化学性能的影响。结果表明,AMX411合金阳极表现出优异的耐腐蚀性和放电性能。AMX411合金的72 h析氢测试结果表明,其最小的析氢量和质量损失分别为(2.25 ± 0.07) mL·cm-2和(2.83 ± 0.12) mg·cm-2;AMX411合金的腐蚀电位(φcorr)和腐蚀电流密度(Jcorr)分别为-1.267 V和(67.9 ± 0.16) µA·cm-2,表明其具有较小的电化学活性和最佳的耐腐蚀性能。随着Al含量的提高含Al第二相的分布逐渐均匀,其在3.5%NaCl溶液中由区域性腐蚀转变为均匀腐蚀,表明耐蚀性提高了。Nyquist图中的高频容抗环最大表明其电荷转移电阻最大,可抑制腐蚀过程中的点蚀。同时,AMX411合金Bode图中的模峰值和相位角峰值最高,进一步表明其耐蚀性优异。同时,合金电极的4 h放电结果表明,在电流密度分别为5、10、20和30 mA·cm-2条件下这种合金电极都保持着较负且稳定的电压,并且在放电电流密度分别为20和30 mA·cm-2条件下其放电效率高达61.36%和65.35%,显著优于AMX111合金电极的41.83%和44.79%。在高电流密度条件下这种合金阳极的利用率较高。AMX411合金优异的性能源于其内部的Al第二相较小且均匀分布,降低了局部电势差和抑制了微电偶腐蚀效应。

关键词 金属材料Mg-Al-Ca-Mn合金镁空气电池腐蚀行为电化学性能    
Abstract

The effect of Al content on the corrosion behavior and electrochemical performance of extruded Mg-Al-Ca-Mn alloy in 3.5%NaCl electrolyte was investigated. The results show that the AMX411 Mg-alloy exhibits excellent corrosion resistance and discharge performance. The measured hydrogen evolution results showed that the minimum hydrogen evolution and mass loss of AMX411 alloy during corrosion process for 72 h were (2.25 ± 0.07) mL·cm-2 and (2.83 ± 0.12) mg·cm-2, while the free corrosion potential (φcorr) and the corrosion current density (Jcorr) were -1.267 V and (67.9 ± 0.16) µA·cm-2 respectively,indicating its low electrochemical activity and best corrosion resistance. In addition, the results of a half-cell discharge test for 4 h revealed that AMX411 alloy maintained a negative and stable voltage regardless of the discharge current densities (5, 10, 20, and 30 mA·cm-2), and its discharge efficiency was as high as 61.36% and 65.35% at current densities 20 and 30 mA·cm-2, which was significantly better than that of AMX111 alloy (41.83% and 44.79%). The excellent performance of AMX411 alloy may be attributed to the existence of much smaller and uniformly distributed precipitations of Al-containing second phase, which effectively reduces the local potential difference and suppresses the micro galvanic corrosion effect, thus facilitating the best corrosion resistance, besides, it still exhibits high anode utilization under high current density, which are all favorable advantages for it to become the anode material for Mg-air batteries.

Key wordsmetallic materials    Mg-Al-Ca-Mn alloy    Mg-air battery    corrosion behavior    electrochemical performance
收稿日期: 2024-10-08     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(52171099);湖南省教育厅重点项目(22A0240)
通讯作者: 甘浪,langgan@csust.edu.cn,研究方向为金属材料
Corresponding author: GAN Lang, Tel: 15111404604, E-mail: langgan@csust.edu.cn
作者简介: 邱玮,男,1979年生,教授,博士
图1  浸泡析氢装置
图2  挤压态合金的OM图
图3  挤压态合金的SEM形貌
图4  AMX合金在3.5%NaCl中浸泡72 h后析氢量-时间曲线和质量损失
Alloyφcorr / VJcorr / µA·cm-2
AMX011-1.59180.5 ± 0.25
AMX111-1.533154.3 ± 0.64
AMX211-1.540133.5 ± 0.38
AMX311-1.56982.7 ± 0.21
AMX411-1.26767.9 ± 0.16
表1  挤压态合金动电位极化曲线拟合数据
图5  AMX合金在3.5%NaCl溶液中的电化学阻抗谱、极化曲线和等效电路
AlloyRs / Ω·cm2CPEdl / µF·cm-2Rct / Ω·cm2L / H·cm2RL / Ω·cm2
Cdln
AMX0116.8548.562 × 10-30.9489656.1537.6463.1
AMX1117.9563.543 × 10-20.556226.4291.157
AMX2116.8251.458 × 10-20.9223241.1110.356.85
AMX3117.5517.881 × 10-30.9454503.8263.4258.1
AMX4117.0418.052 × 10-30.9517760.2368.4581.2
表2  拟合AMX合金的EIS参数
图6  挤压态合金分别浸泡3和24 h后以及去除腐蚀产物后的形貌
图7  AMX合金浸泡在3.5%NaCl溶液中不同时间后的腐蚀机理示意图
图8  挤压态合金浸泡在3.5%NaCl中不同电流密度放电4 h的恒电流放电曲线
ParametersDischarge current density / mA·cm-2AMX011AMX111AMX211AMX311AMX411
Average discharge potential / V5-1.617-1.553-1.557-1.567-1.581
10-1.563-1.503-1.519-1.538-1.547
20-1.477-1.387-1.408-1.437-1.442
30-1.402-1.289-1.310-1.319-1.345
Anode utilization / %543.3230.3633.4943.2744.39
1050.6435.0338.1447.2352.25
2059.7441.8343.6454.5661.36
3063.8244.7946.1558.9865.35
表3  挤压态合金在不同电流密度下放电4 h的平均放电电压和阳极利用率
图9  挤压态合金在电流密度为20 mA·cm-2条件下放电4 h后以及去除放电产物的表面形貌
1 Yang Y, Xiong X M, Chen J, et al. Research advances of magnesium and magnesium alloys worldwide in 2022 [J]. J. Magnes. Alloy., 2023, 11(8): 2611
2 She J, Chen J, Xiong X M, et al. Research advances of magnesium and magnesium alloys globally in 2023 [J]. J. Magnes. Alloy., 2024, 12(9): 3441
3 Kale A M, Lee S Y, Park S J. A comprehensive review of carbon-based air cathode materials for advanced non-aqueous lithium-air batteries [J]. Energy Storage Mater., 2024, 73: 103874
4 Sun W, Wang F, Zhang B, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry [J]. Science, 2021, 371(6524): 46
doi: 10.1126/science.abb9554 pmid: 33384369
5 Yang H B, Wu L, Jiang B, et al. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62: 128
6 Buckingham R, Asset T, Atanassov P. Aluminum-air batteries: A review of alloys, electrolytes and design [J]. J. Power Sources, 2021, 498: 229762
7 Ma J L, Ren F Z, Wang G X, et al. Electrochemical performance of melt-spinning Al-Mg-Sn based anode alloys [J]. Int. J. Hydrog. Energy, 2017, 42(16): 11654
8 Gudić S, Smoljko I, Kliškić M. The effect of small addition of tin and indium on the corrosion behavior of aluminium in chloride solution [J]. J. Alloy. Compd., 2010, 505(1): 54
9 Liu C Y, Luo T J, Li Y J, et al. Microstructure and properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi alloys with high modulus [J]. Chin. J. Mater. Res., 2024, 38(3): 187
9 刘晨野, 罗天骄, 李应举 等. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能 [J]. 材料研究学报, 2024, 38(3): 187
doi: 10.11901/1005.3093.2023.130
10 Liu Y, Kang R, Feng X H, et al. Microstructure and mechanical properties of extruded Mg-Alloy Mg-Al-Ca-Mn-Zn [J]. Chin. J. Mater. Res., 2022, 36(1): 13
doi: 10.11901/1005.3093.2021.249
10 刘 洋, 康 锐, 冯小辉 等. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能 [J]. 材料研究学报, 2022, 36(1): 13
11 Liu M, Zhang Q, Zhang X K, et al. A novel rechargeable Magnesium-Air battery using “All in one” Mg anode with high reversibility [J]. Chem. Eng. J., 2023, 472: 145154
12 Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57(11): 1362
doi: 10.11900/0412.1961.2021.00349
12 潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57(11): 1362
doi: 10.11900/0412.1961.2021.00349
13 Kim H S, Jeong G, Kim Y U, et al. Metallic anodes for next generation secondary batteries [J]. Chem. Soc. Rev., 2013, 42(23): 9011
doi: 10.1039/c3cs60177c pmid: 23954955
14 Wu Y P, Wang Z F, Liu Y, et al. AZ61 and AZ61-La alloys as anodes for Mg-air battery [J]. J. Mater. Eng. Perform., 2019, 28(4): 2006
doi: 10.1007/s11665-019-03985-5
15 Chen X R, Jia Y H, Le Q C, et al. Discharge properties and electrochemical behaviors of AZ80-La-Gd magnesium anode for Mg-air battery [J]. J. Magnes. Alloy., 2021, 9(6): 2113
16 Li X D, Lu H M, Yuan S Q, et al. Performance of Mg-9Al-1In alloy as anodes for Mg-air batteries in 3.5 wt% NaCl solutions [J]. J. Electrochem. Soc., 2017, 164(13): A3131
17 Li Z Y, Wang H X, Li J J, et al. Synergistic effect of second phase and grain size on electrochemical discharge performance of extruded Mg-9Al-xIn alloys as anodes for Mg-air battery [J]. Adv. Eng. Mater., 2020, 22(3): 1901332
18 Feng Y, Lei G, He Y Q, et al. Discharge performance of Mg-Al-Pb-La anode for Mg-air battery [J]. Trans. Nonferrous Met. Soc. China, 2018, 28(11): 2274
19 Wang N G, Wang R C, Peng C Q, et al. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery [J]. Electrochim. Acta, 2014, 149: 193
20 Feng Y, Xiong W H, Zhang J C, et al. Electrochemical discharge performance of the Mg-Al-Pb-Ce-Y alloy as the anode for Mg-air batteries [J]. J. Mater. Chem., 2016, 4A(22) : 8658
21 Xiang Q, Jiang B, Zhang Y X, et al. Effect of rolling-induced microstructure on corrosion behaviour of an as-extruded Mg-5Li-1Al alloy sheet [J]. Corros. Sci., 2017, 119: 14
22 Liu X, Liu S Z, Xue J L. Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries [J]. J. Power Sources, 2018, 396: 667
23 Li C Q, Xu D K, Chen X B, et al. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys [J]. Electrochim. Acta, 2018, 260: 55
24 Chen X R, Wang H N, Zou Q, et al. The influence of heat treatment on discharge and electrochemical properties of Mg-Gd-Zn magnesium anode with long period stacking ordered structure for Mg-air battery [J]. Electrochim. Acta, 2021, 367: 137518
25 Zhang C, Wu L, Huang G S, et al. Effect of microalloyed Ca on the microstructure and corrosion behavior of extruded Mg alloy AZ31 [J]. J. Alloy. Compd., 2020, 823: 153844
26 Yang J, Peng J, Nyberg E A, et al. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy [J]. Appl. Surf. Sci., 2016, 369: 92
27 Wu P P, Xu F J, Deng K K, et al. Effect of extrusion on corrosion properties of Mg-2Ca-χAl (χ = 0, 2, 3, 5) alloys [J]. Corros. Sci., 2017, 127: 280
28 Gu D D, Wang J W, Chen Y B, et al. Effect of Mn addition and refining process on Fe reduction of Mg-Mn alloys made from magnesium scrap [J]. Trans. Nonferrous Met. Soc. China, 2020, 30(11): 2941
29 Yang L, He S Z, Yang C, et al. Mechanism of Mn on inhibiting Fe-caused magnesium corrosion [J]. J. Magnes. Alloy., 2021, 9(2): 676
doi: 10.1016/j.jma.2020.09.015
30 Xiong H Q, Yu K, Yin X, et al. Effects of microstructure on the electrochemical discharge behavior of Mg-6wt%Al-1wt%Sn alloy as anode for Mg-air primary battery [J]. J. Alloy. Compd., 2017, 708: 652
31 Du B D, Liu J, Wang X W, et al. Effect of heat treatment on microstructure and Al-water reactivity of Al-Mg-Ga-In-Sn alloys [J]. Chin. J. Mater. Res., 2021, 35(1): 25
doi: 10.11901/1005.3093.2020.080
31 杜邦登, 刘 军, 王晓婉 等. 热处理对Al-Mg-Ga-In-Sn合金微观结构和铝水反应的影响 [J]. 材料研究学报, 2021, 35(1): 25
doi: 10.11901/1005.3093.2020.080
32 Zhen R, Wu Z, Xu H Y, et al. Microstructures and mechanical properties of Mg-13Gd-1Zn alloy [J]. Chin. J. Mater. Res., 2020, 34(3): 225
doi: 10.11901/1005.3093.2019.364
32 甄 睿, 吴 震, 许恒源 等. Mg-13Gd-1Zn合金的组织与力学性能 [J]. 材料研究学报, 2020, 34(3): 225
33 Liu H, Yan Y, Wu X H, et al. Effects of Al and Sn on microstructure, corrosion behavior and electrochemical performance of Mg-Al-based anodes for magnesium-air batteries [J]. J. Alloy. Compd., 2021, 859: 157755
34 Tong F L, Chen X Z, Wang Q, et al. Hypoeutectic Mg-Zn binary alloys as anode materials for magnesium-air batteries [J]. J. Alloy. Compd., 2021, 857: 157579
35 Zhang J H, Zhang H F, Zhang Y G, et al. Approaches to construct high-performance Mg-air batteries: from mechanism to materials design [J]. J. Mater. Chem., 2023, 11A(15) : 7924
36 Bao J X, Sha J C, Li L H, et al. Electrochemical properties and discharge performance of Mg-3Sn-xCa alloy as a novel anode for Mg-air battery [J]. J. Alloy. Compd., 2023, 934: 167849
37 Liu H X, Zhang T G, Xu J Z. Discharge properties and electrochemical behaviors of Mg-Zn-xSr magnesium anodes for Mg-Air batteries [J]. Materials, 2024, 17(17): 4179
38 Wang N G, Mu Y C, Xiong W H, et al. Effect of crystallographic orientation on the discharge and corrosion behaviour of AP65 magnesium alloy anodes [J]. Corros. Sci., 2018, 144: 107
39 Liang J, Srinivasan P B, Blawert C, et al. Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy [J]. Electrochim. Acta, 2010, 55(22): 6802
40 Sun Y H, Wang R C, Peng C Q, et al. Microstructure and corrosion behavior of as-extruded Mg-xLi-3Al-2Zn-0.2Zr alloys (x = 5, 8, 11 wt.%) [J]. Corros. Sci., 2020, 167: 108487
41 Alateyah A I, Aljohani T A, Alawad M O, et al. Improved corrosion behavior of AZ31 alloy through ECAP processing [J]. Metals, 2021, 11(2): 363
42 Qiu W, Yan R, Liu K D, et al. The semi-continuous (Mg,Al)2Ca second phase on Mg-Al-Ca-Mn alloys as an efficient anti-corrosion anode for Mg-air batteries [J]. J. Alloy. Compd., 2024, 990: 174387
43 Zhang T R, Tao Z L, Chen J. Magnesium-air batteries: from principle to application [J]. Mater. Horiz., 2014, 1(2): 196
44 Zhang J R, Liu M L, Qi J C, et al. Advanced Mg-based materials for energy storage: fundamental, progresses, challenges and perspectives [J]. Prog. Mater. Sci., 2025, 148: 101381
[1] 李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.
[2] 吴玉程, 左彤, 谭晓月, 朱晓勇, 刘家琴. 第一壁自钝化W-Cr-Zr合金的氧化行为和氧化层结构[J]. 材料研究学报, 2025, 39(5): 343-352.
[3] 任学昌, 安菊, 付宁, 姚小庆, 杨镇瑜, 陈泓锦. 在模拟太阳光下溶剂热时长对MIL-88A(Fe)活化过一硫酸盐降解罗丹明B催化性能的影响[J]. 材料研究学报, 2025, 39(5): 329-342.
[4] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[5] 胥聪敏, 孙姝雯, 朱文胜, 陈志强, 李城臣. 三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, 39(4): 281-288.
[6] 符纯国, 徐世伟, 杨晓益, 李萌蘖. 焊接热源模式对5083-H111铝合金接头性能的影响[J]. 材料研究学报, 2025, 39(4): 305-313.
[7] 冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.
[8] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.
[9] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.
[10] 于兴福, 西克宇, 张宏伟, 王全振, 郝天赐, 郑冬月, 苏勇. 离子渗氮后的扩散处理对7Cr7Mo2V2Si冷作模具钢性能的影响[J]. 材料研究学报, 2025, 39(3): 225-232.
[11] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[12] 张慧芳, 吴浩, 肖传民, 李奇, 谢君, 李金国, 王振江, 于金江. 热处理对一种 γʹ 沉淀强化钴基高温合金拉伸性能的影响[J]. 材料研究学报, 2025, 39(3): 198-206.
[13] 胥聪敏, 李雪丽, 付安庆, 孙姝雯, 陈志强, 李城臣. 复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响[J]. 材料研究学报, 2025, 39(2): 145-152.
[14] 吴晓祺, 万红江, 明洪亮, 王俭秋, 柯伟, 韩恩厚. 原位小冲头压缩速率对X65管线钢氢脆敏感性的影响[J]. 材料研究学报, 2025, 39(2): 92-102.
[15] 马修戈, 吴庆辉, 庞建超, 刘增乾, 李守新, 骆凯伦, 张哲峰. 晶界取向差对双晶高温合金常温和高温拉伸性能的影响[J]. 材料研究学报, 2025, 39(2): 81-91.