Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (8): 593-604    DOI: 10.11901/1005.3093.2023.491
  研究论文 本期目录 | 过刊浏览 |
在铝液中热循环H13钢的软化行为
娄伟冬, 赵海东(), 王果
华南理工大学 国家金属材料近净成形工程技术研究中心 广州 510640
Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber
LOU Weidong, ZHAO Haidong(), WANG Guo
National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China
引用本文:

娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
Weidong LOU, Haidong ZHAO, Guo WANG. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. Chinese Journal of Materials Research, 2024, 38(8): 593-604.

全文: PDF(28148 KB)   HTML
摘要: 

将H13钢在ADC12铝液(670~730℃)中热循环(1000~10000 cycles)实验,研究其微观组织的演变和硬度的变化,并基于固态相变动力学理论分析了硬度变化的定量模型。结果表明,在铝液中热循环H13钢发生软化。在热循环的前期基体的软化主要源于位错密度的降低,随着热循环次数的增加软化源于碳化物的粗化、马氏体板条块的宽化以及亚晶粒的长大。在不同的热循环期间,铝液温度的提高使基体的软化加快。依据固态相变动力学方程计算出H13钢的相变激活能为200.78 kJ/mol,与合金元素Cr、V以及Mo在铁素体中的扩散激活能相近。这表明,H13钢的软化速率取决于这些元素的扩散。

关键词 金属材料H13钢热循环微观组织硬度相变动力学    
Abstract

The thermal cycling (1000~10000 cycles) testing of H13 steel between molten ADC12 Al-alloy (670~730oC) and spray cooling chamber was conducted in this paper. The microstructure evolution and hardness change of H13 steel were studied against the cycling process, and then, a quantitative model of hardness change was established based on the kinetics of solid phase transformations theory. The results indicate that H13 steel undergoes softening along with the thermal cycling. At the beginning of the cycling, the softening of the matrix is mainly due to the decrease of dislocation density. With the increase of the cycling times, the softening at the middle and late stages was mainly due to the coarsening of carbides, the broadening of martensite lath and the growth of sub-grains. During different cycling tests, increasing the temperature of the molten Al-alloy may accelerate the softening of the matrix. According to the kinetics equation of solid phase transformations, the calculated phase transformation activation energy of the H13 steel is 200.78 kJ/mol, which is similar to the diffusion activation energy of alloy elements Cr, V, and Mo in ferrite, indicating that the softening rate of H13 steel depends on the diffusion of these elements.

Key wordsmetallic materials    H13 steel    thermal cycling    microstructure    hardness    kinetics of phasetransformation
收稿日期: 2023-10-07     
ZTFLH:  TG142  
基金资助:广东省重点领域研发计划(2020B010184002)
通讯作者: 赵海东,副教授,hdzhao@scut.edu.cn,研究方向为铸造铝合金及数值模拟
Corresponding author: ZHAO Haidong, Tel: (020)87112948-302, E-mail: hdzhao@scut.edu.cn
作者简介: 娄伟冬,男,1996年生,硕士生
ElementsCSiCrMoVMnFe
Content0.401.055.211.391.030.35Bal.
表1  H13钢的主要化学成分
图1  热循环试样的形状、几何尺寸和取样位置
图2  热循环实验设备的工作原理和实际设备
图3  试样在670℃铝液中热循环过程中的温度和平均等效应力
图4  H13钢的原始组织和在不同实验参数下热循环的显微组织
Parameters670oC700oC730oC
1000 cycles98.23±9.2 nm105.78±7.6 nm112.35±5.9 nm
2500 cycles128.57±5.4 nm141.25±4.2 nm149.28±6.2 nm
5000 cycles147.36±4.6 nm161.50±3.3 nm176.30±5.8 nm
10000 cycles163.58±8.2 nm176.32±5.2 nm201.36±4.3 nm
表2  H13钢在不同参数下热循环碳化物的平均等效直径
图5  H13钢在670℃铝液中循环时的明场TEM照片
图6  不同种类碳化物的明场像、选区电子衍射(SAED)和EDS谱
图7  H13钢循环5000次时的EBSD图
图8  马氏体板条块尺寸的分布
图9  H13钢的EBSD晶界图和取向差角分布
ParametersOriginal5000 cycles
670oC700oC730oC
KAM / (°)0.760.470.460.41
GND / 1014m-211.136.576.385.48
表3  H13钢的GND和KAM结果
图10  H13钢在不同实验参数下的显微硬度
图11  H13钢在670℃铝液中的微观组织演变示意图
图12  硬度与微观组织特征的相关性
图13  H13钢在670~730℃铝液中热循环时的线性拟合
Avrami index670oC700oC730oC
n0.4450.3890.346
lnD-4.847-4.073-3.414
表4  H13钢在670~730℃热循环时的线性拟合参数
1 Gupta M K, Singhal V. Review on materials for making lightweight vehicles [J]. Mater. Today: Proc., 2022, 56: 868
2 Liu F, Zhao H D, Chen B, et al. Investigation on microstructure heterogeneity of the HPDC AlSiMgMnCu alloy through 3D electron microscopy [J]. Mater. Des., 2022, 218: 110679
3 Niu Z C, Liu G Y, Li T, et al. Effect of high pressure die casting on the castability, defects and mechanical properties of aluminium alloys in extra-large thin-wall castings [J]. J. Mater. Process. Technol., 2022, 303: 117525
4 Liu F, Zheng H T, Zhong Y, et al. Effect of Cu/Mg-containing intermetallics on the mechanical properties of the as-cast HVDC AlSiMgMnCu alloys by SBFSEM at nano-scale [J]. J. Alloys Compd., 2022, 926: 166837
5 Ding R G, Yang H B, Li S Z, et al. Failure analysis of H13 steel die for high pressure die casting Al alloy [J]. Eng. Failure Anal., 2021, 124: 105330
6 Jilg A, Seifert T. Temperature dependent cyclic mechanical properties of a hot work steel after time and temperature dependent softening [J]. Mater. Sci. Eng., 2018, 721A: 96
7 Sun J, Sun T, Sha S, et al. A study of thermal cyclic softening behavior of hot-deformed die steel [J]. Met. Sci. Heat Treat., 2021, 63(1-2): 18
8 Virtanen E, Van Tyne C J, Levy B S, et al. The tempering parameter for evaluating softening of hot and warm forging die steels [J]. J. Mater. Process. Technol., 2013, 213(8): 1364
9 Klobčar D, Tušek J, Taljat B. Thermal fatigue of materials for die-casting tooling [J]. Mater. Sci. Eng., 2008, 472A(1-2) : 198
10 Li S, Wu X C, Li X X, et al. High temperature performance of a Mo-W type hot work die steel of high thermal conductivity [J]. Chin. J. Mater. Res., 2017, 31(1): 32
doi: 10.11901/1005.3093.2016.037
10 李 爽, 吴晓春, 黎欣欣 等. 钼钨系高导热率热作模具钢高温性能 [J]. 材料研究学报, 2017, 31(1): 32
11 Hu X, Li L, Wu X, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium [J]. Int. J. Fatigue, 2006, 28(3): 175
12 Medvedeva A, Bergström J, Gunnarsson S, et al. High-temperature properties and microstructural stability of hot-work tool steels [J]. Mater. Sci. Eng., 2009, 523A(1-2) : 39
13 Zeng Y, Zuo P P, Wu X C, et al. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13 [J]. Int. J. Miner. Metall. Mater., 2017, 24: 1004
14 Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel [J]. Acta Mater., 2006, 54(5): 1279
15 Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels [J]. Mater. Sci. Eng., 2006, 438-440A: 237
16 Cui Z Q, Qin Y C. Metallography and Heat Treatment. 2nd ed. [M]. Beijing: China Machine Press, 2007: 197
16 崔忠圻, 覃耀春. 金属学与热处理 (第2版) [M]. 北京: 机械工业出版社, 2007: 197
17 Shi Y J, Yu L H, Yu Z P, et al. High temperature stability and thermal fatigue behavior of DM hot working die steel [J]. Chin. J. Mater. Res., 2020, 34(2): 125
doi: 10.11901/1005.3093.2019.339
17 施渊吉, 于林惠, 于照鹏 等. 热作模具钢DM的高温稳定性和热疲劳性能 [J]. 材料研究学报, 2020, 34(2): 125
doi: 10.11901/1005.3093.2019.339
18 Ning A G, Yue S, Gao R, et al. Influence of tempering time on the behavior of large carbides’ coarsening in AISI H13 steel [J]. Metals, 2019, 9(12): 1283
19 Hu Z Q, Wang K K. Investigation into the thermal stability of a novel hot-work die steel 5CrNiMoVNb [J]. High Temp. Mater. Processes, 2022, 41(1): 353
20 Liu Q D, Chu Y L, Peng J C, et al. 3D atom probe characterazation of alloy carbides in tempering martenite III. Coarsening [J]. Acta Metall. Sin., 2009, 45(11): 1297
20 刘庆冬, 褚于良, 彭剑超 等. 回火马氏体中合金碳化物的3D原子探针表征Ⅲ. 粗化 [J]. 金属学报, 2009, 45(11): 1297
21 Wang J, Xu Z N, Lu X F. Effect of the quenching and tempering temperatures on the microstructure and mechanical properties of H13 steel [J]. J. Mater. Eng. Perform., 2020, 29: 1849
22 Klobčar D, Kosec L, Kosec B, et al. Thermo fatigue cracking of die casting dies [J]. Eng. Failure Anal., 2012, 20: 43
23 Zhang X H, Zeng Y P, Cai W H, et al. Study on the softening mechanism of P91 steel [J]. Mater. Sci. Eng., 2018, 728A: 63
24 Wang Y L, Song K X, Zhang Y M. High-temperature softening mechanism and kinetic of 4Cr5MoSiV1 steel during tempering [J]. Mater. Res. Express, 2019, 6(9): 096513
25 Zhang X D, Wang T J, Gong X F, et al. Low cycle fatigue properties, damage mechanism, life prediction and microstructure of MarBN steel: influence of temperature [J]. Int. J. Fatigue, 2021, 144: 106070
26 Li S C, Guo C Y, Hao L L, et al. In-situ EBSD study of deformation behaviour of 600 MPa grade dual phase steel during uniaxial tensile tests [J]. Mater. Sci. Eng., 2019, 759A: 624
27 Chen C R, Wang Y, Ou H G, et al. Energy-based approach to thermal fatigue life of tool steels for die casting dies [J]. Int. J. Fatigue, 2016, 92: 166
28 Lu Y, Ripplinger K, Huang X J, et al. A new fatigue life model for thermally-induced cracking in H13 steel dies for die casting [J]. J. Mater. Process. Technol., 2019, 271: 444
29 Hauke J, Kossowski T. Comparison of values of pearson's and spearman's correlation coefficients on the same sets of data [J]. Quaest. Geogr., 2011, 30(2): 87
30 Hu X B. Thermal fatigue behavior of Niobium microalloyed H13 steel [D]. Shanghai: Shanghai University, 2005
30 胡心彬. 铌微合金化H13钢的热疲劳行为 [D]. 上海: 上海大学, 2005
31 Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth [J]. Trans. Am. Inst. Min. Metall. Eng., 1939, 135: 416
32 Avrami M. Kinetics of phase change. I General theory [J]. J. Chem. Phys., 1939, 7(12): 1103
33 Avrami M. Kinetics of phase change. II transformation‐time relations for random distribution of nuclei [J]. J. Chem. Phys., 1940, 8(2): 212
34 Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III [J]. J. Chem. Phys., 1941, 9: 177
35 Watté P, Van Humbeeck J, Aernoudt E, et al. Strain ageing in heavily drawn eutectoid steel wires [J]. Scr. Mater., 1996, 34: 89
36 Ning A G, Liu Y, Gao R, et al. Effect of tempering condition on microstructure, mechanical properties and precipitates in AISI H13 steel [J]. JOM, 2021, 73(7): 2194
37 Wang Z C. Simulation study on thermal cycle, stress and fatigue of aluminum alloy die-casting dies [D]. Guangzhou: South China University of Technology, 2021
37 王子超. 铝合金压铸模具热循环、应力与疲劳的模拟研究 [D]. 广州: 华南理工大学, 2021
[1] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[2] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[3] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[4] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[5] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[6] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[7] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[8] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[9] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[10] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[11] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[12] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[13] 崔运秋, 牛春杰, 吕建骅, 倪维元, 刘东平, 鲁娜. 高温氦离子辐照对钨表面形貌的影响[J]. 材料研究学报, 2024, 38(6): 437-445.
[14] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[15] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.