|
|
在铝液中热循环H13钢的软化行为 |
娄伟冬, 赵海东( ), 王果 |
华南理工大学 国家金属材料近净成形工程技术研究中心 广州 510640 |
|
Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber |
LOU Weidong, ZHAO Haidong( ), WANG Guo |
National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China |
引用本文:
娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
Weidong LOU,
Haidong ZHAO,
Guo WANG.
Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. Chinese Journal of Materials Research, 2024, 38(8): 593-604.
1 |
Gupta M K, Singhal V. Review on materials for making lightweight vehicles [J]. Mater. Today: Proc., 2022, 56: 868
|
2 |
Liu F, Zhao H D, Chen B, et al. Investigation on microstructure heterogeneity of the HPDC AlSiMgMnCu alloy through 3D electron microscopy [J]. Mater. Des., 2022, 218: 110679
|
3 |
Niu Z C, Liu G Y, Li T, et al. Effect of high pressure die casting on the castability, defects and mechanical properties of aluminium alloys in extra-large thin-wall castings [J]. J. Mater. Process. Technol., 2022, 303: 117525
|
4 |
Liu F, Zheng H T, Zhong Y, et al. Effect of Cu/Mg-containing intermetallics on the mechanical properties of the as-cast HVDC AlSiMgMnCu alloys by SBFSEM at nano-scale [J]. J. Alloys Compd., 2022, 926: 166837
|
5 |
Ding R G, Yang H B, Li S Z, et al. Failure analysis of H13 steel die for high pressure die casting Al alloy [J]. Eng. Failure Anal., 2021, 124: 105330
|
6 |
Jilg A, Seifert T. Temperature dependent cyclic mechanical properties of a hot work steel after time and temperature dependent softening [J]. Mater. Sci. Eng., 2018, 721A: 96
|
7 |
Sun J, Sun T, Sha S, et al. A study of thermal cyclic softening behavior of hot-deformed die steel [J]. Met. Sci. Heat Treat., 2021, 63(1-2): 18
|
8 |
Virtanen E, Van Tyne C J, Levy B S, et al. The tempering parameter for evaluating softening of hot and warm forging die steels [J]. J. Mater. Process. Technol., 2013, 213(8): 1364
|
9 |
Klobčar D, Tušek J, Taljat B. Thermal fatigue of materials for die-casting tooling [J]. Mater. Sci. Eng., 2008, 472A(1-2) : 198
|
10 |
Li S, Wu X C, Li X X, et al. High temperature performance of a Mo-W type hot work die steel of high thermal conductivity [J]. Chin. J. Mater. Res., 2017, 31(1): 32
doi: 10.11901/1005.3093.2016.037
|
10 |
李 爽, 吴晓春, 黎欣欣 等. 钼钨系高导热率热作模具钢高温性能 [J]. 材料研究学报, 2017, 31(1): 32
|
11 |
Hu X, Li L, Wu X, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium [J]. Int. J. Fatigue, 2006, 28(3): 175
|
12 |
Medvedeva A, Bergström J, Gunnarsson S, et al. High-temperature properties and microstructural stability of hot-work tool steels [J]. Mater. Sci. Eng., 2009, 523A(1-2) : 39
|
13 |
Zeng Y, Zuo P P, Wu X C, et al. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13 [J]. Int. J. Miner. Metall. Mater., 2017, 24: 1004
|
14 |
Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel [J]. Acta Mater., 2006, 54(5): 1279
|
15 |
Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels [J]. Mater. Sci. Eng., 2006, 438-440A: 237
|
16 |
Cui Z Q, Qin Y C. Metallography and Heat Treatment. 2nd ed. [M]. Beijing: China Machine Press, 2007: 197
|
16 |
崔忠圻, 覃耀春. 金属学与热处理 (第2版) [M]. 北京: 机械工业出版社, 2007: 197
|
17 |
Shi Y J, Yu L H, Yu Z P, et al. High temperature stability and thermal fatigue behavior of DM hot working die steel [J]. Chin. J. Mater. Res., 2020, 34(2): 125
doi: 10.11901/1005.3093.2019.339
|
17 |
施渊吉, 于林惠, 于照鹏 等. 热作模具钢DM的高温稳定性和热疲劳性能 [J]. 材料研究学报, 2020, 34(2): 125
doi: 10.11901/1005.3093.2019.339
|
18 |
Ning A G, Yue S, Gao R, et al. Influence of tempering time on the behavior of large carbides’ coarsening in AISI H13 steel [J]. Metals, 2019, 9(12): 1283
|
19 |
Hu Z Q, Wang K K. Investigation into the thermal stability of a novel hot-work die steel 5CrNiMoVNb [J]. High Temp. Mater. Processes, 2022, 41(1): 353
|
20 |
Liu Q D, Chu Y L, Peng J C, et al. 3D atom probe characterazation of alloy carbides in tempering martenite III. Coarsening [J]. Acta Metall. Sin., 2009, 45(11): 1297
|
20 |
刘庆冬, 褚于良, 彭剑超 等. 回火马氏体中合金碳化物的3D原子探针表征Ⅲ. 粗化 [J]. 金属学报, 2009, 45(11): 1297
|
21 |
Wang J, Xu Z N, Lu X F. Effect of the quenching and tempering temperatures on the microstructure and mechanical properties of H13 steel [J]. J. Mater. Eng. Perform., 2020, 29: 1849
|
22 |
Klobčar D, Kosec L, Kosec B, et al. Thermo fatigue cracking of die casting dies [J]. Eng. Failure Anal., 2012, 20: 43
|
23 |
Zhang X H, Zeng Y P, Cai W H, et al. Study on the softening mechanism of P91 steel [J]. Mater. Sci. Eng., 2018, 728A: 63
|
24 |
Wang Y L, Song K X, Zhang Y M. High-temperature softening mechanism and kinetic of 4Cr5MoSiV1 steel during tempering [J]. Mater. Res. Express, 2019, 6(9): 096513
|
25 |
Zhang X D, Wang T J, Gong X F, et al. Low cycle fatigue properties, damage mechanism, life prediction and microstructure of MarBN steel: influence of temperature [J]. Int. J. Fatigue, 2021, 144: 106070
|
26 |
Li S C, Guo C Y, Hao L L, et al. In-situ EBSD study of deformation behaviour of 600 MPa grade dual phase steel during uniaxial tensile tests [J]. Mater. Sci. Eng., 2019, 759A: 624
|
27 |
Chen C R, Wang Y, Ou H G, et al. Energy-based approach to thermal fatigue life of tool steels for die casting dies [J]. Int. J. Fatigue, 2016, 92: 166
|
28 |
Lu Y, Ripplinger K, Huang X J, et al. A new fatigue life model for thermally-induced cracking in H13 steel dies for die casting [J]. J. Mater. Process. Technol., 2019, 271: 444
|
29 |
Hauke J, Kossowski T. Comparison of values of pearson's and spearman's correlation coefficients on the same sets of data [J]. Quaest. Geogr., 2011, 30(2): 87
|
30 |
Hu X B. Thermal fatigue behavior of Niobium microalloyed H13 steel [D]. Shanghai: Shanghai University, 2005
|
30 |
胡心彬. 铌微合金化H13钢的热疲劳行为 [D]. 上海: 上海大学, 2005
|
31 |
Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth [J]. Trans. Am. Inst. Min. Metall. Eng., 1939, 135: 416
|
32 |
Avrami M. Kinetics of phase change. I General theory [J]. J. Chem. Phys., 1939, 7(12): 1103
|
33 |
Avrami M. Kinetics of phase change. II transformation‐time relations for random distribution of nuclei [J]. J. Chem. Phys., 1940, 8(2): 212
|
34 |
Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III [J]. J. Chem. Phys., 1941, 9: 177
|
35 |
Watté P, Van Humbeeck J, Aernoudt E, et al. Strain ageing in heavily drawn eutectoid steel wires [J]. Scr. Mater., 1996, 34: 89
|
36 |
Ning A G, Liu Y, Gao R, et al. Effect of tempering condition on microstructure, mechanical properties and precipitates in AISI H13 steel [J]. JOM, 2021, 73(7): 2194
|
37 |
Wang Z C. Simulation study on thermal cycle, stress and fatigue of aluminum alloy die-casting dies [D]. Guangzhou: South China University of Technology, 2021
|
37 |
王子超. 铝合金压铸模具热循环、应力与疲劳的模拟研究 [D]. 广州: 华南理工大学, 2021
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|