Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (7): 481-489    DOI: 10.11901/1005.3093.2023.409
  研究论文 本期目录 | 过刊浏览 |
在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为
王金龙1, 王慧明1, 李应举2, 张宏毅3, 吕晓仁1()
1.沈阳工业大学机械工程学院 沈阳 110870
2.中国科学院金属研究所 沈阳 110016
3.沈阳航天三菱汽车发动机制造有限公司 沈阳 110179
Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction
WANG Jinlong1, WANG Huiming1, LI Yingju2, ZHANG Hongyi3, LV Xiaoren1()
1.College of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Shenyang Aerospace Mitsubishi Motors Automobile Engine Manufacturing Co., Ltd., Shenyang 110179, China
引用本文:

王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
Jinlong WANG, Huiming WANG, Yingju LI, Hongyi ZHANG, Xiaoren LV. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. Chinese Journal of Materials Research, 2024, 38(7): 481-489.

全文: PDF(9781 KB)   HTML
摘要: 

在AZ31镁合金表面制备含30%Al2O3的Al基复合涂层,并观测其上孔隙的大小和形状,进行往复摩擦磨损实验测试复合涂层的摩擦性能并观测横截面孔隙处裂纹的产生,研究了在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为。使用Abaqus和Python脚本建立椭圆形、三角形、矩形和无孔隙复合涂层模型、分析摩擦过程中涂层孔隙处的最大应力和摩擦后最表层的残余应力并讨论了复合涂层应力的有限元分析结果和往复摩擦中裂纹尺寸之间的关系。结果表明:在摩擦过程中复合涂层的应力集中主要产生在椭圆形、三角形和矩形孔隙的长轴端点或其尖角处;从表层到界面残余应力由拉应力转变为压应力再转变为拉应力,最大Mises应力和最表层的平均残余应力逐渐增大。椭圆形孔隙的裂纹从长轴端点萌生和扩展,三角形和矩形孔隙的裂纹起源于尖角处且裂纹的长度和宽度依次增大。有限元分析结果表明,在摩擦过程中涂层孔隙处Mises最大应力值的增大导致摩擦后最表层平均残余应力增大,从而使裂纹的长度和宽度增大。这些结果与往复摩擦实验结果一致。

关键词 金属材料镁合金冷喷涂应力集中孔隙形貌    
Abstract

Al-based composite coatings containing 30%Al2O3 were prepared on AZ31 Mg-alloy via cold-spraying technique. Then the pore feature and cracking behavior of Al-based composite coatings during reciprocating friction testing was assessed by means of a wear-testing machine, as well as and the location of crack initiation for relevant pores on the cross section of coatings. Meanwhile, models for composite coatings of elliptical-, triangular-, and rectangular-pores, and pore-free were respectively established using Abaqus and Python scripts, then the maximum stress of pores during friction and the residual stress on the top surface after friction were analyzed for the composite coatings. The relationship between stress finite element results and the size of cracks induced by reciprocating friction was discussed. The research findings indicated that stress concentration for elliptical-, triangular-, and rectangular-pores mainly occurred at the endpoints of the major axis or at their corners during friction. From the top surface to the interface, the residual stress transformed from tensile stress to compressive stress and then back to tensile stress. For elliptical-, triangular-, and rectangular-pores, the maximum Mises stress and average residual stress on the surface gradually increased. Cracks initiated and propagated from the endpoints of the major axis for elliptical pores, while cracks in triangular- and rectangular-pores originated from the corners, with corresponding increases in crack length and width. Finite element analysis revealed that the increase in the maximum Mises stress of poresduring friction led to an increase in the average residual stress on the surface after friction. This, in turn, resulted in larger crack dimensions, consistent with the findings from the reciprocating friction experiments.

Key wordsmetallic materials    magnesium alloy    cold spray    stress concentration    pore morphology
收稿日期: 2023-08-20     
ZTFLH:  TH117  
基金资助:国防科技重点实验室基金(JCKY61420052021)
通讯作者: 吕晓仁,教授,xrlvsut@126.com,研究方向为材料表面工程技术
Corresponding author: LV Xiaoren, Tel: 13504077230, E-mail: xrlvsut@126.com
作者简介: 王金龙,男,1998年生,硕士生
ElementsAlZnMg
Content31Bal.
表1  AZ31镁合金的化学成分
图1  纯Al和Al2O3粉末的SEM形貌
图2  纯Al和Al2O3粉末的粒度分布
Spray pressure / MPaGas temperature / oCPowder feeding voltage / mVPowder feeding rate / g·min-1Nozzle distance / mm
1.6230283030
表2  冷喷涂工艺参数
图3  涂层截面的金相照片
图4  涂层和不同形状孔隙的电镜照片
图5  复合涂层中不同形状孔隙的模型
图6  复合涂层中不同形状孔隙的模型网格
图7  摩擦示意图
图8  冷喷涂涂层摩擦Mises应力云图
Pore shapeOvalTriangleRectangle
Mises stress maximum value / MPa832.03883.35920.29
Increased Mises maximum value compared to non-porous coating19.32%24.00%27.05%
表3  不同形状孔隙在摩擦过程中的最大Mises应力
图9  冷喷涂涂层的摩擦S11、S22应力云图
图10  不同形状孔隙摩擦最表层S11和S22应力的平均值
图11  往复摩擦后涂层及不同形状孔隙电镜图
图12  不同形状孔隙中裂纹的长度和宽度
[1] Abbott T B. Magnesium: Industrial and research developments over the last 15 years [J]. Corrosion, 2015, 71(2): 120
[2] He X L, Liang H Y, Yan Z F, et al. Stress corrosion cracking behavior of micro-arc oxidized AZ31 alloy [J]. Proc. Inst. Mech. Eng., 2020, 234C(8) : 1640
[3] Assadi H, Kreye H, Gärtner F, et al. Cold spraying-A materials perspective [J]. Acta Mater., 2016, 116: 382
[4] Sova A, Maestracci R, Jeandin M, et al. Kinetics of composite coating formation process in cold spray: Modelling and experimental validation [J]. Surf. Coat. Technol., 2017, 318: 309
[5] Diab M, Pang X, Jahed H. The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium (3%Al-1%Zn) extrusion [J]. Surf. Coat. Technol., 2017, 309: 423
[6] Moridi A, Hassani-Gangaraj S M, Guagliano M. On fatigue behavior of cold spray coating [J]. MRS Online Proc. Lib., 2014, 1650: 503
[7] Champagne V K. The Cold Spray Materials Deposition Process: Fundamentals and Applications [M]. Cambridge: Woodhead Publishing, 2007
[8] Tan J, Ramakrishna S. Applications of magnesium and its alloys: a review [J]. Appl. Sci., 2021, 11(15): 6861
[9] Wang W, Han P, Peng P, et al. Friction stir processing of magnesium alloys: a review [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33(1): 43
[10] Munday G, Hogan J, McDonald A. On the microstructure-dependency of mechanical properties and failure of low-pressure cold-sprayed tungsten carbide-nickel metal matrix composite coatings [J]. Surf. Coat. Technol., 2020, 396: 125947
[11] Yin S, Cavaliere P, Aldwell B, et al. Cold spray additive manufacturing and repair: Fundamentals and applications [J]. Additive Manuf., 2018, 21: 628
[12] Sova A, Grigoriev S, Okunkova A, et al. Cold spray deposition of 316L stainless steel coatings on aluminium surface with following laser post-treatment [J]. Surf. Coat. Technol., 2013, 235: 283
[13] Zahiri S H, Antonio C I, Jahedi M. Elimination of porosity in directly fabricated titanium via cold gas dynamic spraying [J]. J. Mater. Process. Technol., 2009, 209(2): 922
[14] Binder K, Gottschalk J, Kollenda M, et al. Influence of impact angle and gas temperature on mechanical properties of titanium cold spray deposits [J]. J. Thermal Spray Technol., 2011, 20(1-2): 234
[15] Khun N W, Tan A W Y, Bi K J W, et al. Effects of working gas on wear and corrosion resistances of cold sprayed Ti-6Al-4V coatings [J]. Surf. Coat. Technol., 2016, 302: 1
[16] Seng D H L, Zhang Z, Zhang Z Q, et al. Influence of spray angle in cold spray deposition of Ti-6Al-4V coatings on Al6061-T6 substrates [J]. Surf. Coat. Technol., 2022, 432: 128068
[17] Oyinbo S T, Jen T C. Investigation of the process parameters and restitution coefficient of ductile materials during cold gas dynamic spray (CGDS) using finite element analysis [J]. Addit. Manuf., 2020, 31: 100986
[18] Magarò P, Marino A L, Di Schino A, et al. Effect of process parameters on the properties of Stellite-6 coatings deposited by cold gas dynamic spray [J]. Surf. Coat. Technol., 2019, 377: 124934
[19] Joshi A, James S. Molecular dynamics simulation study on effect of process parameters on coatings during cold spray process [J]. Procedia Manuf., 2018, 26: 190
[20] Bhattiprolu V S, Johnson K W, Ozdemir O C, et al. Influence of feedstock powder and cold spray processing parameters on microstructure and mechanical properties of Ti-6Al-4V cold spray depositions [J]. Surf. Coat. Technol., 2018, 335: 1
[21] Wu Z B, Liu H Q, Pang Z X, et al. Pore-scale experiment on blocking characteristics and EOR mechanisms of nitrogen foam for heavy oil: A 2D visualized study [J]. Energy Fuels, 2016, 30(11): 9106
[22] Tao Y S, Xiong T Y, Sun C, et al. Effect of α-Al2O3 on the properties of cold sprayed Al/α-Al2O3 composite coatings on AZ91D magnesium alloy [J]. Appl. Surf. Sci., 2009, 256(1): 261
[23] Dayani S B, Shaha S K, Ghelichi R, et al. The impact of AA7075 cold spray coating on the fatigue life of AZ31B cast alloy [J]. Surf. Coat. Technol., 2018, 337: 150
[24] Yang M, Zhu Y P, Wang X Y, et al. Effect of five kinds of pores shape on thermal stress properties of thermal barrier coatings by finite element method [J]. Ceram. Int., 2017, 43(13): 9664
[25] Wang X J, Wang X X, Niu X H, et al. Effects of pore complex shape, distribution and overlap on the thermal conductivity of porous insulation materials [J]. Int. J. Thermophys., 2020, 41(10): 145
[26] Wei Z Y, Dong X X, Cai H N, et al. Influences of the near-spherical 3D pore on failure mechanism of atmospheric plasma spraying TBCs using a macro-micro integrated model [J]. Surf. Coat. Technol., 2022, 437: 128375
[27] Liu D D, Tang D P. Influence of pores on thermal mechanical behavior of thermal barrier coatings with finite element method analysis [J]. J. Chongqing Univ. Inst. Technol. (Nat. Sci.), 2018, 32(3): 135
[27] 刘冬冬, 唐达培. 有限元分析热障涂层孔隙对其热力行为的影响 [J]. 重庆理工大学学报(自然科学版), 2018, 32(3): 135
[28] Li J L. Research on impact resistance and interface performance of composite structure based on 3D printing method [D]. Dalian: Dalian University of Technology, 2021
[28] 李俊磊. 基于3D打印复合结构抗冲击及界面性能研究 [D]. 大连: 大连理工大学, 2021
[29] Saleh M, Luzin V, Spencer K. Analysis of the residual stress and bonding mechanism in the cold spray technique using experimental and numerical methods [J]. Surf. Coat. Technol., 2014, 252: 15
[30] Holmquist T J, Johnson G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures [J]. J. Appl. Mech., 2011, 78(5): 051003
[31] Zhang J T, Liu L S, Zhai P C, et al. The prediction of the dynamic responses of ceramic particle reinforced MMCs by using multi-particle computational micro-mechanical method [J]. Compos. Sci. Technol., 2007, 67(13): 2775
[32] Zhu Y H, Liu G R, Wen Y K, et al. Back-Spalling process of an Al2O3 ceramic plate subjected to an impact of steel ball [J]. Int. J. Impact Eng., 2018, 122: 451
[33] Huang G S. Simulation on cold spraying process of ZnNi-Al2O3 coating and its parameters optimizing [D]. Harbin: Harbin Institute of Technology, 2016
[33] 黄国胜. 耐蚀ZnNi-Al2O3涂层冷喷涂过程数值模拟及工艺优化 [D]. 哈尔滨: 哈尔滨工业大学, 2016
[34] Yu H, Zhou M Z, Xia J H, et al. Mechanical properties of GNPs/Al composites prepared by mechanical stirring and sintering [J]. Rare Metals Mater. Eng., 2022, 51(8): 3041
[34] 于 欢, 周明哲, 夏金环 等. 机械搅拌和烧结制备GNPs/Al复合材料力学性能 [J]. 稀有金属材料与工程, 2022, 51(8): 3041
[35] Sayahlatifi S, Shao C W, McDonald A, et al. 3D microstructure-based finite element simulation of cold-sprayed Al-Al2O3 composite coatings under quasi-static compression and indentation loading [J]. J. Thermal Spray Technol., 2022, 31: 102
[36] Cong B G. Research on the grinding of spiral bevel gear in the gear box of a new type double wind turbine [D]. Lanzhou: Lanzhou University of Technology, 2019
[36] 从宝刚. 新型双风轮风力机齿轮箱螺旋锥齿轮磨削加工研究 [D]. 兰州: 兰州理工大学, 2019
[37] Shi Z R, Zhao L Y, Wang Z, et al. Effect of crack length on driving force of crack propagation in dissimilar metal welded joints [J]. Ship Sci. Technol., 2022, 44(13): 76
[37] 石哲任, 赵凌燕, 王 正 等. 裂纹长度对焊接接头裂纹扩展驱动力的影响 [J]. 舰船科学技术, 2022, 44(13): 76
[38] Dai C Y, Zhong S C, Fu X B, et al. Finite element study of the influence of ceramic layer porosity on interfacial residual stress of thermal barrier coatings TGO [J]. Nondestruct. Test., 2019, 41(8): 30
[38] 戴晨煜, 钟舜聪, 伏喜斌 等. 陶瓷层孔隙对热障涂层TGO界面残余应力影响的有限元研究 [J]. 无损检测, 2019, 41(8): 30
doi: 10.11973/wsjc201908007
[39] Zhang Y. Microstructure and properties of brazed joints between SICf/SIC composites and GH536 superalloy [D]. Shenyang: Shenyang Aerospace University, 2022
[39] 张 瑜. SiCf/SiC复合材料与GH536高温合金钎焊接头组织及性能研究 [D]. 沈阳: 沈阳航空航天大学, 2022
[40] Ren Y Q, King P C, Yang Y S, et al. Characterization of heat treatment-induced pore structure changes in cold-sprayed titanium [J]. Mater. Charact., 2017, 132: 69
[41] Wei Z Y, Cai H N, Meng G H, et al. An innovative model coupling TGO growth and crack propagation for the failure assessment of lamellar structured thermal barrier coatings [J]. Ceram. Int., 2020, 46(2): 1532
[42] Wang Q G, Apelian D, Lados D A. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects [J]. J. Light Metals, 2001, 1(1): 73
[43] Li H Y, Guo Y J, Wang L, et al. Quantitative analysis of the influence of different fillet radius on the stress concentration area of tee [J]. Press. Vessel Technol., 2021, 38(6): 53, 86
[43] 李海洋, 郭延军, 王 鲁 等. 不同圆角半径对三通应力集中区域影响的量化分析 [J]. 压力容器, 2021, 38(6): 53, 86
[44] Qiu L. Studies on composition optimizing of bond coat in thermal barrier coatings [D]. Shanghai: Shanghai Jiao Tong University, 2014
[44] 邱 琳. 热障涂层粘结层成分优化设计研究 [D]. 上海: 上海交通大学, 2014
[45] Liu H Z, Wang J S, Shi G Y. Effects of microfibril helix angle in the S2 layer of compression wood cell wall on the compressive toughness of it [J]. J. Beijing For. Univ., 2023, 45(4): 136
[45] 刘浩正, 王建山, 石广玉. 应压木细胞壁S2层的微纤丝螺旋角对其抗压韧性的影响 [J]. 北京林业大学学报, 2023, 45(4): 136
[1] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[2] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[3] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[4] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[5] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[6] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[7] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[8] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[9] 崔运秋, 牛春杰, 吕建骅, 倪维元, 刘东平, 鲁娜. 高温氦离子辐照对钨表面形貌的影响[J]. 材料研究学报, 2024, 38(6): 437-445.
[10] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[11] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[12] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[13] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[14] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[15] 伍英明, 姜科达, 刘胜胆, 范世通, 覃秋慧, 李俊. lnZ 条件下6013铝合金的热压缩变形行为[J]. 材料研究学报, 2024, 38(5): 337-346.